Skip to main content
Log in

Stability of least energy patterns of the shadow system for an activator-inhibitor model

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Stability of stationary solutions to the shadow system for the activator-inhibitor system proposed by Gierer and Meinhardt is considered in higher dimensional domains. It is shown that a stationary solution with minimal “energy” is stable in a weak sense if the inhibitor reacts sufficiently fast, while it is unstable whenever the reaction of the inhibitor is slow. Moreover, the loss of stability results in a Hopf bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Crandall and P.H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal.,67 (1977), 53–72.

    Article  MATH  MathSciNet  Google Scholar 

  2. E.N. Dancer, On stability and Hopf bifurcations for chemotaxis systems. Preprint, 2000.

  3. A. Doelman, R.A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations. Indiana Univ. Math. J.,49 (2000).

  4. B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ℝn. Mathematical Analysis and Applications, Part A; Adv. Math. Suppl. Stud.,7A (1981), 369–402.

    MathSciNet  Google Scholar 

  5. A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetik (Berlin),12 (1972), 30–39.

    Article  Google Scholar 

  6. M. Grossi, Uniqueness of the least-energy solutions for a semilinear Neumann problem. Proc. Amer. Math. Soc,128 (2000), 1665–1672.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math.840, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1981.

    Google Scholar 

  8. D. Iron and M.J. Ward, A metastable spike solutions for a nonlocal reaction-diffusion model. SIAM J. Appl. Math.,60 (2000), 778–802.

    Article  MATH  MathSciNet  Google Scholar 

  9. M.K. Kwong, Uniqueness of positive solutions of Δu −u +u p = 0 in ℝn. Arch. Rational Mech. Anal.,105 (1989), 243–266.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.-S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem. Calculus of Variations and Partial Differential Equations (eds. S. Hildebrandt, D. Kinderlehrer and M. Miranda), Lecture Notes in Math.1340, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1988, 160–174.

    Chapter  Google Scholar 

  11. C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations,72 (1988), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  12. C.-S. Lin and I. Takagi, Method of rotating planes applied to a singularly perturbed Neumann problem. Calc. Var. Partial Differential Equations, to appear.

  13. W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math.,44 (1991), 819–851.

    Article  MATH  MathSciNet  Google Scholar 

  14. W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions. Duke Math. J.,70 (1993), 247–281.

    Article  MATH  MathSciNet  Google Scholar 

  15. W.-M. Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Indust. Appl. Math.,12 (1995), 327–365.

    Article  MATH  MathSciNet  Google Scholar 

  16. W.-M. Ni, I. Takagi, J. Wei and E. Yanagida, in preparation.

  17. W.-M. Ni, I. Takagi, and E. Yanagida, Stability analysis of point-condensation solutions to a reaction-diffusion system proposed by Gierer and Meinhardt. Preprint.

  18. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London, Ser. B,237 (1952), 37–72.

    Article  Google Scholar 

  19. J. Wei, On a nonlocal eigenvalue problem and its applications to point-condensations in reaction-diffusion systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg.,10 (2000), 1485–1496.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Wei, Uniqueness and critical spectrum of boundary spike solutions. Proc. Roy. Soc. Edinburgh, Sect. A (Mathematics), to appear.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ni, WM., Takagi, I. & Yanagida, E. Stability of least energy patterns of the shadow system for an activator-inhibitor model. Japan J. Indust. Appl. Math. 18, 259–272 (2001). https://doi.org/10.1007/BF03168574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03168574

Key words

Navigation