Skip to main content
Log in

Nitrogen in austenitic stainless steels

  • Stainless Steels
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nitrogen alloyed in austenitic stainless steels improves austenite stability, mechanical properties and corrosion resistance. Steels supersaturated with nitrogen (“super-nitrogen steels”) have been investigated, which rival the latest ferritic steels in strength but have potentially greater toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Adcock, “The Effect of Nitrogen on Chromium and Some Iron-Chromium Alloys,” J. Iron Steel Inst., 114 (1926), pp. 119–126.

    Google Scholar 

  2. R.B. Gunia and G.R Woodrow, “Nitrogen Improves Engineering Properties of Chromium-Nickel Stainless Steels,” J. Mater., 5 (1970), pp. 413–430.

    CAS  Google Scholar 

  3. V.F. Zackay, J.F. Carlson and P.L. Jackson, “High Nitrogen Austenitic Steels,” Trans. Amer. Soc. Met., 46 (1956), pp. 509–525.

    Google Scholar 

  4. V.F. Zackay, E.R Morgan and J.C. Shyne, “Production of High Nitrogen Steels,” J. Met., 8 (1956), p. 216.

    CAS  Google Scholar 

  5. W.M. Small and R.D. Pehlke, “The Effect of Alloying Elements on the Solubility of Nitrogen in Liquid Iron-Chromium-Nickel Alloys,” Trans. AlME, 242 (1968), pp. 2501–2505.

    CAS  Google Scholar 

  6. H. Feichtinger, A. Satir-Kolorz and Z. Xiao-Hong, “Solubility of Nitrogen in Solid and Liquid Iron Alloys with Special Regard to the Melting Range,” accepted for publication in HNS—88, ed. J. Fact and A. Hendry (London: Institute of Metals, 1989).

    Google Scholar 

  7. M. Kikuchi, M. Kajihara and K. Frisk, “Solubility of Nitrogen in Austenitic Stainless Steels,” accepted for publication in Proc. HNS—88 (Lille, France) ed. J. Fact and A. Hendry (London: Institute of Metals, 1989) (hereafter cited as HNS—88).

    Google Scholar 

  8. M.A. Harzenmoser and P.J. Uggowitzer, “Neue aufgesteckte austenitischrostfreie Stähle und Duplexstähle,” Modem Stähle, vol. 1, ed. P.J. Uggowitzer and M.O. Speidel (Zurich: Schweizerischen Akademie der Werkstoffwissenschaften, ETH, 1987), pp. 219–247.

    Google Scholar 

  9. K. Frisk and M. Hillert, “Thermodynamics of the Fe-CrNi-N System,” HNS—88.

  10. R.P. Reed, “Austenitic Stainless Steels with Emphasis on Strength at Low Temperatures,” Alloying (Metals Park, OH: ASM, 1988), pp. 225–256.

    Google Scholar 

  11. G.R. Speich, Source Book on Stainless Steels (Metals Park, OH: ASM, 1976), pp. 424–426.

    Google Scholar 

  12. A.L. Schaeffier, “Constitution Diagram for Stainless Steel Weld Metals,” Met. Prog., 56 (1949), pp. 680.

    Google Scholar 

  13. T.A. Siewert, C.N. McCowan and D.L. Olson, “Ferrite Number Prediction to 100FN in Stainless Steel Weld Metal,” Weld. J., 67 (1988), pp. 289s–298s.

    Google Scholar 

  14. T. Masumoto and Y. Imai, “Structural Diagrams and Tensile Properties of the 18%Cr-Fe-Ni-N Quaternary System Alloys,” J. Jap. Inst. Met., 33 (1969), pp. 1364–1371.

    CAS  Google Scholar 

  15. R.P. Reed, unpublished data, National Institute of Standards and Technology, Boulder, Colorado (1988).

  16. H.M. Ledbetter and M.W. Austin, “Stacking-Fault Energies in 304-Type Stainless Steels: Effects of Interstitial Carbon and Nitrogen,” Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures—VIII, ed. R.P. Reed (NBSIR 85.3025, National Bureau of Standards, 1985), pp. 271-294.

    Google Scholar 

  17. R. Taillard and J. Fact, ldMechanisms of the Action of Nitrogen Interstitials upon the Low Cycle Fatigue Behavior of 316 Stainless Steel,” HNS—88.

  18. R.E. Stoltz and J.B. VanderSande, “The Effect of Nitrogen on Stacking Fault Energy of Fe-Ni-Cr-Mn Steels,” Met. Trans., 11 (A) (1980), pp. 1033–1037.

    Google Scholar 

  19. T. Sakamoto et al., “High Corrosion Resistant Nitrogen-Containing Stainless Steels for Use by the Chemical Industry,” Alloys for the Eighties, ed. R.Q. Barr (Greenwich, CT: Amax, 1980), pp. 269–279.

    Google Scholar 

  20. J.R. Kerns, “The Effect of Nitrogen on the Corrosion Resistance of Austenitic Stainless Alloys Containing Molybdenum,” New Developments in Stainless Steel Technology, ed. R.A. Lula (Metals Park, OH: ASM, 1985), pp. 117–127.

    Google Scholar 

  21. C.R. Clayton and K.G. Martin, “Evidence of Anodic Segregation of Nitrogen in High Nitrogen Stainless Steels and Its Influence on Passivity,” HNS—88.

  22. J.E. Truman, “Effects of Nitrogen Alloying on Corrosion Behavior of High Alloy Steels,” HNS—88.

  23. P. Gümpel and T. Ladwein, “The Effect of Nitrogen on Mechanical-Technological and Corrosion Properties of Stainless Steels,” HNS—88.

  24. H. Their, A. Baumel and E. Schmidtmann, “Einfluss von Stickstoff auf des Ausscheidungsverhalten des Stahles x5CrNiMol713,” Arch. Eisenhüttenw, 40 (1969), pp. 333–339.

    Google Scholar 

  25. M.H. Lewis and B. Hattersley, “Precipitation of M23C6 in Austenitic Steels,” Acta Metall., 13 (1965), pp. 1159–1168.

    CAS  Google Scholar 

  26. R.P. Reed and N.J. Simon, ““Nitrogen Strengthening of Austenitic Staioless Steels at Low Temperatures,” HNS—88.

  27. R.P. Reed, P.T. Purtacher and L.A. Delgado, “Low-Temperature Properties of High-Manganese Austenitic Steels,” High-Manganese Austenitic Steels, ed. R.A. Lula (Metals Park, OH: ASM, 1988), pp. 13–22.

    Google Scholar 

  28. E. Werner, P.J. Uggowitzer and M.O. Speidel, “Mechanical Properties and Aging Behavior of Nitrogen Alloyed Austenitic Steels,” Mechanical Behaviour of Materials—V, (New York: Pergamon, 1987).

    Google Scholar 

  29. S. Yamamoto, N. Yamagami and C. Ouchi, “Effect of Metallurgical Variables on Strength and Toughness of Mn-Cr and Ni-Cr Stainless Steels at 4.2 K,” Advances in Cryogenic Engineering-Materials, vol. 32, ed. R.P. Reed and A.F. Clark (New York, NY: Plenum, 1986), pp. 57–64.

    Google Scholar 

  30. T. Sakamoto et al., “Nitrogen-Containing 25Cr-13Ni Stainless Steel as a Cryogenic Structural Material,” Advances in Cryogenic Engineering—Materials, vol. 30, ed. A.F. Clark and R.P. Reed (New York, NY: Plenum, 1984), 137–144.

    Google Scholar 

  31. Y. Takahasbi et al., “Mechanical Evaluation of Nitrogen.Strengthened Stainless Steels at 4 K, “Advances in Cryogenic Engineering—Materials, vol. 28, ed. R.P. Reed and A.F. Clark (New York, NY: Plenum, 1982), pp. 73–81.

    Google Scholar 

  32. M. Fujikura and T. Kato, “Effects of Carbon, Nitrogen and Nickel Content on the Low Temperature Impact Value of High Manganese Austenitic Steel,” J. Iron Steel Inst. Jap., 64 (1978), pp. 97–106.

    Google Scholar 

  33. L.A. Norström, “The Influence of Nitrogen and Grain Size on Yield Strength in Type AISI 316L Austenitic Stainless Steel,” Met. Sci., 11 (1977), pp. 208–212.

    Google Scholar 

  34. K.J. Irvine, T. Gladman and F.B. Pickering, “The Strength of Austenitic Steels,“ J. Iron Steel Inst., 207 (1969), pp. 1017–1028.

    CAS  Google Scholar 

  35. K.J. Irvine, D.T. Llewellyn and F.B. Pickering, “High-Strength Austenitic Stainless Steels,” J. Iron Steel Inst., 199 (1961), pp. 153–175.

    CAS  Google Scholar 

  36. G. Stein, J. Menzel and H. Dörr, “Möglichkeiten zur Herstellung von Schmiedestrücken mit hohen Stickstoffgehalten in der Desu-Anlage,” Moderne Stähle, Ergebnisse der Werkstoff-Forschung, vol. 1 (Zurich: Schweizerische Akademie der Werstoffwissenschaften, 1987), pp. 181–193.

    Google Scholar 

  37. P.J. Uggowitzer and M. Harzenmoser, “Strengthening of Austenitic Stainless Steels by Nitrogen,” HNS—88.

  38. P.D. Goodell, T.M. Cullen and J.W. Freeman, “The Influence of Nitrogen and Certain Other Elements on the Creep-Rupture Properties of Wholly Austenitic Type 304 Steel,” J. Basic Eng. (Trans. Amer. Soc. Met. E), 89 (1967), pp. 517–524.

    CAS  Google Scholar 

  39. J.H. Hoke, “Mechanical Properties of Stainless Steel at Elevated Temperatures,” Handbook of Stainless Steels, ed. D. Peckner and I.M. Bernstein (New York: McGrawHill, 1977), pp. 21.1–21.20.

    Google Scholar 

  40. Y. Kawabe, R. Nakagawa and T. Makoyama, “Effect of Nitrogen and Molybdenum on the High Temperature Strength of 18Cr-12Ni-0.02C Austenitic Steel,” Trans Iron Steel Inst. Jap., 8 (1968), pp. 353–362.

    CAS  Google Scholar 

  41. T. Nakazawa et al., “Effects of Nitrogen and Carbon on Creep Properties of Type 316 Stainless Steels,” HNS—88.

  42. J.K. Solberg, “The Influence of Carbon and Nitrogen on the High Temperature Creep Properties of AISI 316 Austenitic Stainless Steel,” Mater. Sci. Eng., 55 (1982), pp. 39–44.

    CAS  Google Scholar 

  43. J. Sobotka et al., “Creep Ductility and Creep Fracture of Non-Stabilized CrNiMo Steels with Nitrogen Additions,” HNS—88.

  44. T. Matsuo et al., “Effect of Nitrogen on Creep Deformation of 25Cr-28Ni Austenitic Stee1s-Solid Solution Strengthening Due to Nitrogen,” HNS—88.

  45. R.L. Tobler and R.P. Reed, “Interstitial Carbon and Nitrogen Effects on the Cryogenic Fatigue Crack Growth of AISI 304 Stainless Steel,” J. Test. Eval., 12 (1984), pp. 364–370.

    CAS  Google Scholar 

  46. S. Degallaix, J.I. Dickson and J. Foot, “The Effect of Nitrogen on the Fatigue and Creep-Fatigue Behavior of Austenitic Stainless Steels,” HNS—88.

  47. G. Torkhov et al., “Development of Melting and Thermomechanical Processing Parameters for a High-Nitrogen Stainless Steel Prepared by Plasma-Arc Remelting,” J. Met., 30 (1978), pp. 20–27.

    CAS  Google Scholar 

  48. G. Stein, J. Menzel and H. Dörr, “Manufacture of Massively Nitrogen-Alloyed Steels,” HNS—88.

  49. W. Holzgruber, “Process Technology for High Nitrogen Steels,” HNS—88.

  50. P.J. Uggowitzer, M.O. Speidel and E. Werner, “Fracture Tonghness of Cold Worked Austenitic Steels,” Mechanical Behaviour of Materials—V (New York: Pergamon, 1987), pp. 401–410.

    Google Scholar 

  51. E.B. Kula, Army Materials Technology Laboratory, Watertown, Massachusetts; private communication, 1988.

  52. M.O. Speidel, “atProperties and Applications of High-Nitrogen Steels,” HNS—88.

  53. J. Menzel, G. Stein and P. Dahlmann, “Massively Nitrogen-Alloyed Bolt Materials for High-Strength and High-Temperature Applications,” HNS—88.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, R.P. Nitrogen in austenitic stainless steels. JOM 41, 16–21 (1989). https://doi.org/10.1007/BF03220991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220991

Keywords

Navigation