Skip to main content
Log in

Thermal Analysis—Theory and Applications in Metalcasting

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Monitoring and adjusting the chemical composition and the nucleation potential of casting alloys melts is critical to the production of castings of consistent high quality. While other methods such as fractured test samples (e.g., the wedge test for gray iron) and spectrographic chemical analysis deliver useful information, thermal analysis (TA) (also called cooling curve analysis, CCA) can provide a more complete insight in the dynamic changes occurring upon melting and during melt treatment of casting alloys. Initially TA was used for the rapid evaluation of the carbon equivalent (CE) in cast iron, or the silicon content in Al-Si alloys. Extensive research then extended the capabilities of TA to the understanding of the solidification changes induced by compositional variations such as the Mn/S ratio, Ce and Mg additions. With the advent of ever faster computers, the first derivative of the cooling curve, which is the cooling rate, was added to the arsenal of data provided by TA, and a new technique, Computer Aided Cooling Curve Analysis (CA-CCA), was born. This technique evolved then into Differential Thermal Analysis (DTA) without a reference sample. With this tool in hand the metallurgist ventured to predict not only the chemistry of the melt but also the nucleation potential (degree of inoculation), the shrinkage propensity, the dendrite arm spacing and the grain size, the graphite shape, the solidification microstructure, and even the room temperature microstructure. Currently, different TA techniques are used worldwide in the daily production of all grades of cast iron, as well as in monitoring the melting of aluminum and steel alloys.

From this short introduction it should be obvious that the story of DTA/CCA is a long and exciting one. This paper will try to summarize the fascinating development and extraordinary success of this technique in the casting industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Le Chatelier, Z. Phys. Chem. 1 (1887) 396.

    Google Scholar 

  2. W.C. Roberts-Austen, Metallographist, 2 (1899) 186.

    Google Scholar 

  3. N.S. Kurnakov, Z. Anorg. Chemie, 42 (1904) 184.

    Google Scholar 

  4. E. Saladin, Iron and Steel Metallurgy Metallography, 7 (1904) 237.

    Google Scholar 

  5. E. Piwowarski, Hochwertiges Gusseisen, Springer Verlag, Berlin (1961).

    Google Scholar 

  6. E. Piwowarski, Giesserei 25 (1938) 523.

    Google Scholar 

  7. C.R. Loper, R.W. Heine and A. Shah, AFS Trans. 75 (1967) 541.

    Google Scholar 

  8. R.L. Naro and J.F. Wallace, AFS Trans. 78 (1970) 229–238.

    Google Scholar 

  9. A. De Sy, J. Vidts, Traité de metallurgie structurale theorique et appliquée, Ed. Dunod, Paris (1962) 464p.

  10. L. Bäckerud, K. Nilsson and H. Steen, in The Metallurgy of Cast Iron, B. Lux, I. Minkoff and F. Mollard, Eds., Georgi Publishing, Switzerland (1975) 625.

  11. D.M. Stefanescu, in The Physical Metallurgy of Cast Iron, H. Fredriksson and M. Hillert eds., Elsevier (1985) 151.

  12. J.G. Humphreys, BCIRA J. 9 (1961) 609–621.

    Google Scholar 

  13. D.M. Stefanescu and S. Katz, “Thermodynamic Properties of Iron-Base Alloys,” ASM Handbook vol. 15 — Casting (2008) 41–55.

  14. R.W. Heine, AFS Cast Metals Res. J. (June 1971) 49–54.

  15. R.W. Heine, AFS Trans. 82 (1974) 462–470.

    Google Scholar 

  16. W. Donald and A. Moore, BCIRA Report no. 1128 (1973).

  17. W. Van der Perre: “Thermal analysis, principles and applications,” Heraeus Electro-Nite website http://heraeus-electro-nite.com (last accessed 10-30-14).

  18. G.R. Strong, AFS Trans. 91 (1983) 151–156.

    Google Scholar 

  19. T. Kanno, I. Kang, Y. Fukuda, M. Morinaka and H. Nakae, AFS Trans. (2006) paper 06-083.

  20. E.F. Ryntz, J.F. Janowak, A.W. Hochstein and C.A. Wargel, AFS Trans. 79 (1971) 161–164.

    Google Scholar 

  21. R. Monroe and C.E. Bates, AFS Trans. 90 (1982) 307–311.

    Google Scholar 

  22. M.D. Chaudhari, R.W. Heine and C.R. Loper, AFS Trans. 79 (1971) 399.

    Google Scholar 

  23. D.M. Stefanescu, C.R. Loper, R.C. Voigt and I.G. Chen, AFS Trans. 90 (1982) 333.

    Google Scholar 

  24. D. Rabus and S. Polten, Giesserei Rundshau, no. 9 (1972) 1–8.

  25. P. Strizik, Giesserei 61 (1974) 615–618.

    Google Scholar 

  26. D.M. Stefanescu, L. Dinescu, S. Craciun and M. Popescu, in Proc. 46th Int. Foundry Cong., Madrid, Spain, CIATF, (October 1979).

  27. I.G. Chen, D.M. Stefanescu, AFS Transactions, 92 (1984) 947–964.

    Google Scholar 

  28. S. Charoenvilaisiri and D. M. Stefanescu, Proceedings of the 7th Asian Foundry Congress, Taipei, Taiwan (2001) 91.

  29. D.A. Sparkman, “Thermal Analysis Metrics by Derivatives,” http://www.meltlab.com//hottopics/feb2010htopic.pdf (last accessed 10-30-14).

  30. D.A. Sparkman, Trans. AFS 119 (2011).

  31. P.E. Persson, A. Udroiu, P. Vomacka, Wang Xiaojing and T. Sjögren, Proceedings of the 69th World Foundry Congress (2010).

  32. P. Larrañaga, J.M. Gutierez, A. Loizaga, J. Sertucha, and R. Suárez, Trans. AFS 116 (2008) paper 08-008.

  33. N. Kayama, K. Murai, H. Nakae, Report Casting Res. Lab., Waseda Univ., Tokyono.21 (1970).

    Google Scholar 

  34. G. Mahn, B.C. Mahanty, Stahl und Eisen, 89(23) (1969).

  35. C. Henschel, R.W. Heine, AFS Cast Metals Res. J. (Sept. 1971).

  36. D. Glover, C.E. Bates and R. Monroe, Trans. AFS, 90 (1982) 745–757.

    Google Scholar 

  37. H. Fredriksson and Ulla Åkerlind, Solidification and Crystallization Processing in Metals and Alloys, Wiley (2012).

  38. L. Bäckerud, G.C. Chai and J. Tamminen, Solidification Characteristics of Aluminum Alloys, AFS/Skanaluminium, Stockholm (1990) 256p.

  39. S. Dawson, P. Popelar, in 2013 Keith Millis Symposium on Ductile Iron (2013) 59.

  40. L. Ekpoom and R. W. Heine, Trans. AFS, 89 (1981) 27.

    Google Scholar 

  41. I.G. Chen and D. M. Stefanescu, Trans. AFS 92 (1984) 947.

    Google Scholar 

  42. S. L. Bäckerud and G. K. Sigworth, Trans. AFS 97 (1989) 459.

    Google Scholar 

  43. K.G. Upadhya, D. M. Stefanescu, K. Lieu and D.P. Yeger, Trans. AFS 97 (1989) 61.

    Google Scholar 

  44. W.T. Kierkus and J. H. Sokolowski, Trans. AFS 107 (1999) 161.

    Google Scholar 

  45. R. Mackay, J. H. Sokolowski, R. Hasenbusch, and W.J. Evans, Trans. AFS, paper 03-96 (2003).

  46. S. N. Lekakh and V. L. Richards, Trans. AFS 119 (2011) paper 11-042.

  47. A. Dioszegi and I. Svensson Mat. Sc. Eng. A 413–414 (2005) 474.

  48. E. Fras, W. Kapturkiewicz, A. Burbielko and H.F. Lopez, Trans. AFS 101 (1993) 505.

    Google Scholar 

  49. J.O. Barlow and D.M. Stefanescu, Trans. AFS 105 (1997) 349.

    Google Scholar 

  50. A. Dioszegi and J. Hattel, Int. J. Cast Metals Research 17 (2004) 311.

    Article  Google Scholar 

  51. G. Alonso, P. Larrañaga, J. Sertucha, R. Suárez, D.M. Stefanescu, Trans. AFS 120 (2012) 329–35.

    Google Scholar 

  52. L. Ananthanarayanan, F.H. Samuel and J.E. Gruzleski, AFS Trans. 100 (1992) 383–391.

    Google Scholar 

  53. S. Gowri, AFS Trans. 102 (1994) 503–508.

    Google Scholar 

  54. D. Apelian, G.K. Sigworth and K.R. Whaler, AFS Trans. 92 (1984) 297–307.

    Google Scholar 

  55. J. Charbonnier, AFS Trans. 92 (1984) 907–922.

    Google Scholar 

  56. D. Apelian and J.J.A. Cheng, AFS Trans. 94 (1986) 797–808.

    Google Scholar 

  57. N. Tenekedjiev and J.E. Gruzleski, AFS Trans. 99 (1991) 1–6.

    Google Scholar 

  58. D. Sparkman, AFS Trans. 102 (1994) 229–233.

    Google Scholar 

  59. P. Zhu and R.W. Smith, AFS Trans. 103 (1995) 601–609.

    Google Scholar 

  60. C.H. Chang and T.S. Shih, AFS Trans. 102 (1994) 357–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanescu, D.M. Thermal Analysis—Theory and Applications in Metalcasting. Inter Metalcast 9, 7–22 (2015). https://doi.org/10.1007/BF03355598

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355598

Keywords

Navigation