Skip to main content
Log in

The Influence of Small Additions of Silver on the Structure and Properties of Aged Aluminum Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

General conclusions

  1. 1.

    Small additions of silver can exert marked effects on the structure and properties of several aluminum alloys. It is believed that so-called trace elements effects such as this will assume increasing importance in the future because, in many alloy systems, the combinations of major alloying elements have been investigated.

  2. 2.

    The most significant effects of silver additions are observed in alloys based on the Al-Zn-Mg system. On the basis of endurance lives in a range of environments, the stress-corrosion resistance of Al-Zn-Mg-Cu alloys is increased while still maintaining a high level of strength. The addition of silver has been shown to increase the threshold stress for stress-corrosion cracking in an industrial atmosphere but this has not been confirmed for alternate immersion tests in a NaCl solution. Overall, the effects of silver are most marked if the addition of silver is made in conjunction with minor modifications to certain other alloying elements, and a higher ageing temperature is used (e.g. 165°C).

  3. 3.

    There is evidence that the stress-corrosion resistance of welded Al-Zn-Mg alloys is increased if silver is added to the parent metal or solely to the filler rod.

  4. 4.

    Silver additions may modify the structure and properties of aged Al-Mg and Al-Cu-Mg alloys (providing the Mg: Cu ratio is sufficiently high). One possible practical implication of these results is that silver may increase the elevated temperature stability of certain Al-Cu-Mg alloys and preliminary results have been obtained for one experimental composition.

  5. 5.

    From the fundamental viewpoint, it is considered that the effects of silver on the precipitation processes in certain aluminum alloys arise because of an interaction between silver atoms, magnesium atoms, and vacant lattice sites. The interaction is believed to modify the nucleation processes of the particular precipitates although the mechanisms differ depending on the alloy concerned. In alloys based on the Al-Zn-Mg system, silver stimulates nucleation of the existing precipitate whereas silver promotes the formation of a different precipitate in a wide range of Al-Cu-Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. J. Polmear, J. Inst. Metals, vol. 86, 1957–58, p. 113.

    Google Scholar 

  2. I. J. Polmear, ibid., vol. 87, 1958–59, p. 24.

    Google Scholar 

  3. I. J. Polmear & J. Scott-Young, ibid., p. 65.

    Google Scholar 

  4. I. J. Polmear, Nature, vol. 186, 1960, p. 303.

    Article  Google Scholar 

  5. I. J. Polmear, J. Inst. Metals, vol. 89, 1961–62, p. 51.

    Google Scholar 

  6. I. J. Polmear, ibid., p. 193.

    Google Scholar 

  7. I. J. Polmear, Metal Progress, vol. 81, 1962, p. 82.

    Google Scholar 

  8. J. T. Vietz, K. R. Sargant & I. J. Polmear, J. Inst. Metals, vol. 92, 1963–64, p. 327.

    Google Scholar 

  9. I. J. Polmear & K. R. Sargant, Nature, vol. 200, 1963, p. 669.

    Article  Google Scholar 

  10. I. J. Polmear, Trans. Met. Soc. A.I.M.E., vol. 230, 1964, p. 1331.

    Google Scholar 

  11. J. H. Auld, J. T. Vietz & I. J. Polmear, Nature, vol. 209, 1966, p. 703.

    Article  Google Scholar 

  12. J. T. Vietz & I. J. Polmear, J. Inst. Metals, vol. 94, 1966, p. 410.

    Google Scholar 

  13. E. Di Russo, Aluminio Nuova Metallurgia, vol. 33, 1964, p. 505.

    Google Scholar 

  14. H. S. Rosenbaum & D. Turnbull, Acta Met., vol. 6, 1958, p. 653.

    Article  Google Scholar 

  15. A. Kelly & R. B. Nicholson, “Progress in Materials Science”, Oxford (Pergamon Press), vol. 10, 1963, p. 244.

    Google Scholar 

  16. J. D. Embury & R. B. Nicholson, J. Aust. Inst. Metals, vol. 8, 1963, p. 76.

    Google Scholar 

  17. R. B. Mears, R. H. Brown, & E. H. Dix Jr., “Symposium on Stress Corrosion Cracking of Metals”, 1944, p. 329, (A.S.T.M. & A.I.M.E.).

  18. G. Thomas & J. Nutting, J. Inst. Metals, vol. 86, 1957–58, p. 7.

    Google Scholar 

  19. G. Thomas & J. Nutting, ibid., vol. 88, 1959–60, p. 81.

    Google Scholar 

  20. G. Meikle, ibid., vol. 85, 1956–57, p. 540, (discussion).

    Google Scholar 

  21. W. Rosenkranz, U. S. Patent, 2,823,994, 1958.

  22. I. J. Polmear, J. Inst. Metals, vol. 94, 1966, p. 36.

    Google Scholar 

  23. K. G. Kent, “Proceedings of Second Commonwealth Welding Conference”, 1965, p. 260 (discussion).

  24. J. M. Truscott & D. S. Calvert, J. Inst. Metals, vol. 95, 1967, p. 289.

    Google Scholar 

  25. W. Rosenkranz, Aluminium, vol. 39, 1963, p. 290, 630, 741.

    Google Scholar 

  26. W. Shütz & E. Gassner, Laboratorium fur Betriebsfestigkeit, Tech. Note 13/65.

  27. E. Di Russo, Aluminio Nuova Metallurgia, vol. 34, 1965, p. 331.

    Google Scholar 

  28. E. Lindstrand, Private communication.

  29. R. W. Elkington & A. N. Turner, J. Inst. Metals, vol. 95, 1967, p. 294.

    Google Scholar 

  30. C. Panseri & E. Di Russo, Aluminio Nuova Metallurgia, vol. 30, 1961, p. 549.

    Google Scholar 

  31. R. Chadwick, N. B. Muir, & H. B. Grainger, J. Inst. Metals, vol. 85, 1956–57, p. 161.

    Google Scholar 

  32. D. James, J. Roy. Aero. Soc., vol. 70, 1966, p. 763 & Private Communication.

    Article  Google Scholar 

  33. H. A. Holl, Corrosion, vol. 23, 1967, p. 173.

    Article  Google Scholar 

  34. G. Lorimer & R. B. Nicholson, Acta Met., vol. 14, 1966, p. 1009.

    Article  Google Scholar 

  35. D. O. Sprowls & R. H. Brown, “Stress Corrosion Mechanisms for Aluminium Alloys”. Paper presented at an International Conference on Fundamental Aspects of Stress-Corrosion Cracking. The Ohio State University. Sept. 1967.

    Google Scholar 

  36. J. H. Auld, Acta Met., vol. 16, 1968, p. 97.

    Article  Google Scholar 

  37. J. H. Auld & B. E. Williams. Acta Cryst., vol. 21, 1966, p. 830

    Article  Google Scholar 

  38. J. T. Vietz & I. J. Polmear, Op. cit., Reference 23, p. 254.

  39. J. M. Silcock, J. Inst. Metals, vol. 89, 1960–61 p. 203

    Google Scholar 

  40. R. N. Wilson & P. J. E. Forsyth, ibid., vol. 94, 1966, p. 8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Portions of the research for this paper were undertaken while the author was a Principal Research Scientist, Materials Division, Aeronautical Research Laboratories, Dept. of Supply, Melbourne, Australia. Contributions made by his former colleagues are gratefully acknowledged, with thanks given to the other laboratories which participated in the investigation, and to Messrs. C. J. Leadbeater, British Ministry of Technology, and R. Schmidt, U. S. Dept. of the Navy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polmear, I.J. The Influence of Small Additions of Silver on the Structure and Properties of Aged Aluminum Alloys. JOM 20, 44–51 (1968). https://doi.org/10.1007/BF03378722

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03378722

Navigation