Skip to main content
Log in

Temperature dependence of the hardness of secondary phases common in turbine bucket alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Representative examples of the most common types of secondary phases in turbine bucket alloys have been synthesized in bulk and their hardness measured from room temperature to 800°C. It is concluded that high hot hardness of the dispersed phase is an important factor in the high temperature strength of alloys but that other (as yet not explicitly identified) factors are also significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arbiter: New High Temperature Intermetallic Materials. WADC Technical Report No. 53-190. Amer. Electrometals Corp., 1953.

  2. W. Arbiter: New High Temperature Intermetallic Materials II. WADC Technical Report No. 53-190, Part II. Amer. Electrometals Corp., 1953.

  3. W. A. Maxwell and E. M. Grahla: Investigation of Nickel-Aluminum Alloys Containing From 14–34 Pct Aluminum. NACA Technical Note No. 3259, 1954.

  4. E. M. Grahla: Investigation of the Ni3Al Phase of Nickel-Aluminum Alloys. NACA Technical Note No. 3660, 1956.

  5. R. Silverman, W. Arbiter, and F. Hodi: Effect of Sigma Phase on Co-Cr-Mo Base Alloys. ASM Trans., 1957, vol. 49.

  6. R. L. Wachtell: Investigation of Various Properties of NiAl. WADC Technical Report No. 52-291, 1953.

  7. W. H. Herz: Investigation of Various Properties of NiAl II. WADC Technical Report No. 52-291-11, 1954.

  8. W. H. Herz: Investigation of Various Properties of NiAl III. WADC Technical Report No. 52-291-III, 1955.

  9. J. B. McAndrew and H. D. Kessler: Ti-36% Al as a Base for High Temperature Alloys. AIME Trans., 1956, vol. 206, p. 1348; Journal of Metals, October 1956.

    Google Scholar 

  10. H. J. Beattie, Jr. and F. L. VerSnyder: A-286 Alloy Phases. GE Thomson Laboratory Report No. DF55SE26, 1955.

  11. F. L. VerSnyder and H. J. Beattie, Jr.: The Laves Phase in A-286 Alloy. GE Thomson Laboratory Report No. R55TL028, 1955.

  12. C. B. Craver, G. N. Aggen, and W. W. Dyrkacz: A Study of Precipitation Hardening of A-286 Alloy. Allegheny Ludlum Steel Report No. R-H-0111-#8, 1955.

  13. H. J. Beattie, Jr. and F. L. VerSnyder: Micro-constituents in High Temperature Alloys. ASM Trans., 1953, vol. 45, p. 397

    Google Scholar 

  14. L. O. Brockway and W. C. Bigelow: The Investigation of the Minor Phases of Heat Resistant Alloys by Electron Diffraction and Electron Microscopy. WADC Technical Report No. 54-589. University of Michigan, 1955.

  15. B. M. Rosenbaum: X-Ray Diffraction Investigation of 20 High Temperature Alloys. NACA Technical Note No. 1580, 1948.

  16. W. C. Hagel and H. J. Beattie: Aging Reactions in Certain Super Alloys. ASM Trans., 1957, vol. 49.

  17. D. A. Oliver and G. T. Harris: The Development of a High Creep Austenitic Steel for Gas Turbines. Journal West of Scotland Iron and Steel Institute, 1947, vol. 54, p. 97.

    Google Scholar 

  18. H. J. Beattie, Jr. and F. L. VerSnyder: The Laves and Chi Phases in a Modified 12Cr Stainless Alloy. ASM Trans., 1955, vol. 47.

  19. K. W. Andrews: A New Intermetallic Phase in Alloy Steels. Nature, 1949, vol. 164, p. 1015

    Article  Google Scholar 

  20. K. W. Andrews and P. E. Brookes: Chi Phase in Alloy Steels. Metal Treatment and Drop Forging, 1951, vol. 18, p. 301

    Google Scholar 

  21. P. K. Koh: Occurrence of Chi Phase in Molybdenum-Bearing Stainless Steels. AIME Trans., 1953, vol. 197, p. 339; Journal of Metals, February 1953.

    Google Scholar 

  22. J. Birtalan and R. A. Bloom: Occurrence of Chi Phase in a 16 Pct Cr-15 Pct Ni-7 Pct Mn-6 Pct Mo Alloy. AIME Trans., 1956, vol. 206, p. 210; Journal of Metals, February 1956.

    Google Scholar 

  23. J. Lane and N. J. Grant: Carbide Reactions in High Temperature Alloys. ASM Trans., 1952, vol. 44, p. 113

    Google Scholar 

  24. J. W. Weeton and R. A. Signorelli: An Investigation of Lamellar Structures and Minor Phases in Eleven Cobalt Base Alloys Before and After Heat Treatment. NACA Technical Note No. 3109, 1954.

  25. F. S. Badger and W. O. Sweeny, Jr.: Metallurgy of High Temperature Alloys Used on Current Gas Turbine Designs. Symposium on Materials for Gas Turbine, p. 99. ASTM. Philadelphia, 1946.

    Google Scholar 

  26. J. W. Weeton and R. A. Signorelli: Effect of Heat Treatment upon Microstructures, Microconstituents, and Hardness of a Wrought Cobalt Base Alloy. ASM Trans., 1955, vol. 47, p. 815

    Google Scholar 

  27. R. L. Beck, E. E. Fletcher, A. R. Elsea, A. B. Westerman, and G. K. Manning: Alloys for High Temperature Service. Metal Progress, 1954, vol. 66, No. 1-A, p. A191.

    Google Scholar 

  28. G. T. Harris and H. C. Child: Development of a High Temperature Alloy for Gas Turbine Rotor Blades. Symposium on High Temperature Steels and Alloys for Gas Turbines. Iron and Steel Institute. London, 1952.

    Google Scholar 

  29. R. F. Wilde and N. J. Grant: Aging in Complex Commercial Nickel-Chromium Alloys Hardened with Titanium and Aluminum. AIME Trans., 1957, vol. 209, p. 865; Journal of Metals, July 1957.

    Google Scholar 

  30. R. Nordheim and N. J. Grant: Aging Characteristics of Nickel-Chromium Alloys Hardened with Titanium and Aluminum. AIME Trans., 1954, vol. 200, p. 211; Journal of Metals, February 1954.

    Google Scholar 

  31. H. W. G. Hignett: High Temperature Alloys in British Jet Engines. International Nickel Co. New York, 1951.

    Google Scholar 

  32. R. W. Guard and T. A. Prater: Austenitic Alloy for High Temperature Use. ASM Trans., 1957, vol. 49.

  33. R. M. Parke and F. P. Bens: Chromium Base Alloys. Symposium on Materials for Gas Turbines, p. 80. ASTM. Philadelphia.

  34. J. P. Hammond: An Investigation of Microconstituents in Cr Base Cr-Fe-Mo Alloys and their Behavior with Heat Treatment. Ph.D. dissertation. Yale University, 1949.

    Google Scholar 

  35. J. P. Hammond, A. B. Westerman, and H. C. Cross: Micro-constituents in Cr Base Cr-Fe-Mo Alloys and their Behavior with Heat Treatment. AIME Trans., 1952, vol. 184, p. 1329; Journal of Metals, December 1952.

    Google Scholar 

  36. V. N. Krivobok and E. N. Skinner: Composition and Strength of Heat Resisting Alloys. Metal Progress, 1955, vol. 68, p. 120B.

    Google Scholar 

  37. J. H. Westbrook: Temperature Dependence of Hardness of the Equi-atomic Iron Group Aluminides. Journal Electrochemical Soc., 1956, vol. 103, p. 54.

    Article  Google Scholar 

  38. J. H. Westbrook: Microhardness Testing at High Temperatures. ASTM. To be published.

  39. J. H. Westbrook: Temperature Dependence of the Hardness of Pure Metals: ASM Trans., 1953, vol. 45, p. 221.

    Google Scholar 

  40. E. Ammann and J. Hinnüber: The Development of Hard Metal Alloys in Germany. Stahl und Eisen, 1951, vol. 71, p. 1081

    Google Scholar 

  41. J. H. Westbrook: Note on the Temperature Dependence of Hardness of the Transition Metal Monocarbides. Acta Metallurgica, 1955, vol. 3, p. 104

    Article  Google Scholar 

  42. J. H. Westbrook: Unpublished research.

  43. G. A. Geach and J. E. Hughes: The Alloys of Rhenium with Molybdenum or with Tungsten and Having Good High Temperature Properties. Proceedings Second Plansee Seminar. Reutte, 1955.

  44. J. Hinnüber: Cemented Carbides with Special Chemical and Physical Properties: Technische Mitteilüngen Krupp, 1954, vol. 12, p. 1.

    Google Scholar 

  45. J. H. Westbrook: Unpublished research.

  46. J. C. Holzworth and A. L. Boegehold: Gmoodie, a Low-Cost Die Material. Metal Progress, 1956, vol. 69, p. 49.

    Google Scholar 

  47. J. G. McMullin, S. F. Reiter, and D. G. Ebeling: Equilibrium Structures in Fe-Cr-Mo Alloys. ASM Trans., 1954, vol. 46, p. 799

    Google Scholar 

  48. H. J. Goldschmidt: Discussion of Ref. 47. ASM Trans., 1954, vol. 46, p. 807

    Google Scholar 

  49. J. S. Kasper: Atomic and Magnetic Ordering in Transition Metal Structures. Crystal Structure. ASM. Cleveland, 1955.

  50. A. T. Grigorev, N. M. Gruzdeva, and I. A. Bondar: The Chemical Nature of the Sigma Phase in the Iron-Chromium System. Izvestia Sektora Fiziko-Khimicheskogo Analiza, 1954, vol. 21, p. 132

    Google Scholar 

  51. E. J. Dulis and G. N. Smith: Identification and Mode of Formation and Resolution of Sigma Phase in Austenitic Chromium-Nickel Steels. Symposium on the Nature, Occurrence and Effects of Sigma Phase, p. 3. ASTM. Philadelphia, 1950.

    Book  Google Scholar 

  52. J. J. Gilman, P. K. Koh, and O. Zmeskal: Delta Ferrite Formation and its Influence on the Formation of Sigma in a Wrought Heat Resisting Steel. ASM Trans., 1949, vol. 41, p. 137

    Google Scholar 

  53. J. W. Putnam, N. J. Grant, and D. S. Bloom: Sigma Phase in Chromium-Molybdenum Alloys with Iron or Nickel. Symposium on the Nature, Occurrence and Effects of Sigma Phase, p. 61. ASTM. Philadelphia, 1950.

    Google Scholar 

  54. H. Bückle: The Contribution of Microhardness to the Study of Solid State Reactions. Proceedings International Symposium on Reactivity of Solids, p. 133. Gothenburg. 1952.

  55. J. S. Kasper: The Ordering of Atoms in the Chi Phase of the Fe-Cr-Mo System. Acta Metallurgica, 1954, vol. 2, p. 456

    Article  Google Scholar 

  56. H. Bückle: Discussion of paper by E. M. Onitach-Modl. Microhardness as a Tool in the Investigation of the Sintering Process in Complex Systems. Proceedings First Plansee Seminar, p. 184. Reutte, 1952.

  57. E. N. Kislyakova: Determination of the Structure and the Composition of the Double Carbides in the System W-Co-C by Means of Investigation on the Relative Intensities of Debye Lines. Journal of Physical Chemistry USSR, 1943, vol. 17, p. 108.

    Google Scholar 

  58. A. Westgren and G. Phragmen: The Double Carbide of High Speed Steel. Trans. Amer. Soc. for Steel Treating, 1928, vol. 13, p. 539.

    Google Scholar 

  59. K. Kuo: The Formation of η Carbides. Acta Metallurgica, 1953, vol. 1, p. 301

    Article  Google Scholar 

  60. J. H. Westbrook: Unpublished research.

  61. P. Leckie-Ewing: A Study of the Microhardness of the Major Carbides in Some High Speed Steels. ASM Trans., 1952, vol. 44, p. 348

    Google Scholar 

  62. R. Kieffer and P. Schwartzkopf: Hartestoffe und Hartmetalle, p. 517. Springer. Wien, 1953.

    Book  Google Scholar 

  63. D. K. Das, S. P. Rideout, and P. A. Beck: Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Systems. AIME Trans., 1953, vol. 194, p. 1071; Journal of Metals, October 1953.

    Google Scholar 

  64. S. F. Reiter and W. R. Hibbard: High Temperature Properties of Iron Rich Fe-Mo Alloys. AIME Trans., 1955, vol. 203, p. 655; Journal of Metals, May 1955.

    Google Scholar 

  65. J. C. Fisher, E. W. Hart, and R. H. Pry: The Hardening of Metal Crystals by Precipitate Particles. Acta Metallurgica, 1953, vol. 1, p. 336

    Article  Google Scholar 

  66. D. Tabor: A Simple Theory of Static and Dynamic Hardness. Proceedings Royal Soc., London, 1948, vol. A192, p. 247.

    Article  Google Scholar 

  67. H. J. Siekman, E. W. Goliber, and K. W. Stalker: Tomorrow’s Cutting Tools. American Machinist, 1956, vol. 100, p. 160

    Google Scholar 

  68. W. Köster and F. Sperner: The Ternary System Cobalt-Chromium-Carbon. Archiv für das Eisenhüttenwesen, 1955, vol. 26, p. 555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

TP 4582E. Manuscript, Dec. 14, 1956. Cleveland Meeting, April 1957.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westbrook, J.H. Temperature dependence of the hardness of secondary phases common in turbine bucket alloys. JOM 9, 898–904 (1957). https://doi.org/10.1007/BF03397938

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03397938

Navigation