Skip to main content

Free-floating robotic systems

  • Conference paper
  • First Online:
Control Problems in Robotics and Automation

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 230))

Abstract

This chapter reviews selected topics related to kinematics, dynamics and control of free-floating robotic systems. Free-floating robots do not have a fixed base, and this fact must be accounted for when developing kinematic and dynamic models. Moreover, the configuration of the base is given by the Special Euclidean Group SE(3), and hence there exist no minimum set of generalized coordinates that are globally defined. Jacobian based methods for kinematic solutions will be reviewed, and equations of motion will be presented and discussed. In terms of control, there are several interesting aspects that will be discussed. One problem is coordination of motion of vehicle and manipulator, another is in the case of underactuation where nonholonomic phenomena may occur, and possibly smooth stabilizability may be precluded due to Brockett's result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander H L, Cannon R H Jr 1987 Experiments on the control of a satellite manipulator. In: Proc 1987 American Control Conf. Seattle, WA

    Google Scholar 

  2. Bremer H 1988 Über eine Zetralgleichung in der Dynamik. Z Angew Math Mech. 68:307–311

    Google Scholar 

  3. Brockett R W 1983 Asymptotic stability and feedback stabilization. In: Brockett R W, Millmann R S, Sussman H J (eds) Differential Geometric Control Theory. Birkhäuser, Boston, MA, pp 181–208

    Google Scholar 

  4. Coron J-M, Kerai E-Y 1996 Explicit feedbacks stabilizing the attitude of a rigid spacecraft with two control torques. Automatica. 32:669–677

    Google Scholar 

  5. Coron J-M, Rosier L 1994 A relation between continuous time-varying and discontinuous feedback stabilization. J Math Syst Estim Contr. 4:67–84

    Google Scholar 

  6. Egeland O 1987 Task-space tracking with redundant manipulators. IEEE J Robot Automat. 3:471–475

    Google Scholar 

  7. Egeland O, Godhavn J-M 1994 Passivity-based attitude control of a rigid spacecraft. IEEE Trans Automat Contr. 39: 842–846

    Google Scholar 

  8. Egeland O, Sagli J R 1993 Coordination of motion in a spacecraft/manipulator system. Int J Robot Res. 12:366–379

    Google Scholar 

  9. Goldstein H 1980 Classical mechanics. (2nd ed) Addison Wesley, Reading, MA

    Google Scholar 

  10. Hermes H 1967 Discontinuous vector fields and feedback control. In: Hale J K, LaSalle J P (eds) Differential Equations and Dynamical Systems. Academic Press, New York, pp 155–165

    Google Scholar 

  11. Hermes H 1991 Nilpotent and high-order approximation of vector field systems. SIAM Res. 33:238–264

    Google Scholar 

  12. Hughes P C 1986 Spacecraft Attitude Dynamics. Wiley, New York

    Google Scholar 

  13. Kawski M 1990 Homogeneous stabilizing feedback laws. Contr Theo Adv Tech. 6:497–516

    Google Scholar 

  14. Khalil H K 1996 Nonlinear systems. (2nd ed) Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  15. Longman R W, Lindberg R E, Zedd M F 1987 Satellite-mounted robot manipulators — New kinematics and reaction moment compensation. Int J Robot Res. 6(3):87–103

    Google Scholar 

  16. M'Closkey R T, Murray R M 1993 Nonholonomic systems and exponential convergence: Some analysis tools. In: Proc 32nd IEEE Conf Decision Contr. San Antonio, TX, pp 943–948

    Google Scholar 

  17. M'Closkey R T, Murray R M 1997 Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans Automat Contr. 42:614–628

    Google Scholar 

  18. Morin P, Samson C 1995 Time-varying exponential stabilization of the attitude of a rigid spacecraft with two controls. In: Proc 34th IEEE Conf Decision Contr. New Orleans, LA, pp 3988–3993

    Google Scholar 

  19. Morin P, Samson C 1996 Time-varying exponential stabilization of chained form systems based on a backstepping technique. In: Proc 35th IEEE Conf Decision Contr. Kobe, Japan, pp 1449–1454

    Google Scholar 

  20. Morin P, Samson C 1997 Time-varying exponential stabilization of a rigid spacecraft with two control torques. IEEE Trans Automat Contr. 42:528–534

    Google Scholar 

  21. Mukherjee R, Chen D 1992 Stabilization of free-flying under-actuated mechanisms in space. In: Proc 1992 Amer Contr Conf. Chicago, IL, pp 2016–2021

    Google Scholar 

  22. Mukherjee R, Nakamura Y 1992 Formulation and efficient computation of inverse dynamics of space robots. IEEE Trans Robot Automat. 8: 400–406

    Google Scholar 

  23. Murray R M, Li Z, Sastry S S 1994 A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL

    Google Scholar 

  24. Nakamura Y, Mukherjee R 1991 Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans Robot Automat. 7:500–514

    Google Scholar 

  25. Olver P J 1993 Applications of Lie Groups to Differential Equations. (2nd ed) Springer-Verlag, New York

    Google Scholar 

  26. Oriolo G, Nakamura Y 1991 Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. In: Proc 30th IEEE Conf Decision Contr. Brighton, UK, pp 2398–2403

    Google Scholar 

  27. Papadopoulos E, Dubowsky S 1991 On the nature of control algorithms for free-floating space manipulators. IEEE Trans Robot Automat. 7:750–758

    Google Scholar 

  28. Pettersen K Y, Egeland O 1996 Position and attitude control of an underactuated autonomous underwater vehicle. In: Proc 35th IEEE Conf Decision Contr. Kobe, Japan, pp 987–991

    Google Scholar 

  29. Pettersen K Y, Egeland O 1997 Robust control of an underactuated surface vessel with thruster dynamics. In: Proc 1997 Amer Contr Conf. Albuquerque, New Mexico

    Google Scholar 

  30. Pomet J-B, Samson C 1993 Time-varying exponential stabilization of nonholonomic systems in power form. Tech Rep 2126, INRIA

    Google Scholar 

  31. Rosenberg R M 1977 Analytical Dynamics of Discrete Systems. Plenum Press, New York

    Google Scholar 

  32. Rui C, Kolmanovsky I, McClamroch N H 1996 Feedback reconfiguration of underactuated multibody spacecraft. In: Proc 35th IEEE Conf Decision Contr. Kobe, Japan, pp 489–494

    Google Scholar 

  33. Samson C 1991 Velocity and torque feedback control of a nonholonomic cart. In: Canudas de Wit C (ed) Advanced Robot Control. Springer-Verlag, London, UK, pp 125–151

    Google Scholar 

  34. Samson C, Le Borgne M, Espiau B 1991 Robot Control: The Task Function Approach. Clarendon Press, Oxford, UK

    Google Scholar 

  35. Sciavicco L, Siciliano B 1996 Modeling and Control of Robot Manipulators. McGraw-Hill, New York

    Google Scholar 

  36. Sontag E, Sussmann H 1980 Remarks on continuous feedback. In: Proc 19th IEEE Conf Decision Contr. Albuquerque, NM, pp 916–921

    Google Scholar 

  37. Umetani Y, Yoshida K 1987 Continuous path control of space manipulators. Acta Astronaut. 15:981–986

    Google Scholar 

  38. Vafa Z, Dubowsky S. 1987 On the dynamics of manipulators in space using the virtual manipulator approach. In: Proc 1987 IEEE Int Conf Robot Automat. Raleigh, NC, pp 579–585

    Google Scholar 

  39. Wen J T-Y, Kreutz-Delgado K 1991 The attitude control problem. IEEE Trans Automat Contr. 36:1148–1162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Siciliano Kimon P. Valavanis

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Egeland, O., Pettersen, K.Y. (1998). Free-floating robotic systems. In: Siciliano, B., Valavanis, K.P. (eds) Control Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015080

Download citation

  • DOI: https://doi.org/10.1007/BFb0015080

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76220-1

  • Online ISBN: 978-3-540-40913-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics