Skip to main content
Log in

Free vibration analysis of a flat stiffened plate with side crack through the Ritz method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The free vibration of a flat plate with a side crack of Mode I fracture, reinforced by one stiffener parallel to the edges of the plate, is studied in this paper. Based on the classical theories of plate and beam, the plate and its stiffener are modeled separately and jointed by implementing the condition for compatibility of displacement. To describe the singularity in stress at the tip of the crack and the discontinuity in displacement across the crack, a set of functions are introduced and incorporated into the admissible functions of the displacement. The effects of location, length and orientation of side cracks on the vibration frequencies and mode shapes of the stiffened plate are demonstrated through the Ritz method with the special admissible functions. The natural frequencies of the intact and cracked stiffened plates with different stiffener locations are analyzed with two typical boundary conditions, i.e., SSSS and FSFS. The accuracy of the present solutions is verified through a convergence test. The solutions are compared with the finite element results as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mukherjee, A., Mukhopadhyay, M.: A review of dynamic behavior of stiffened plates. Shock Vib. Dig. 18, 3–8 (1986). https://doi.org/10.1177/058310248601800603

    Article  Google Scholar 

  2. Mukhopadhyay, M., Mukherjee, A.: Recent advances on the dynamic behavior of stiffened plates. Shock Vib. Dig. 21, 6–9 (1989)

    Article  Google Scholar 

  3. Abolghasemi, S., Eipakchi, H.R., Shariati, M.: An analytical procedure to study vibration of rectangular plates under non-uniform in-plane loads based on first-order shear deformation theory. Arch. Appl. Mech. 86, 853–867 (2016). https://doi.org/10.1007/s00419-015-1066-8

    Article  Google Scholar 

  4. Civalek, Ö.: Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. (2013). https://doi.org/10.1016/j.compositesb.2013.01.027

    Article  Google Scholar 

  5. Yang, X.D., Zhang, W., Chen, L.Q., Yao, M.H.: Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dyn. (2012). https://doi.org/10.1007/s11071-011-0042-2

    Article  MathSciNet  Google Scholar 

  6. Katsikadelis, J.T., Babouskos, N.G.: Stiffness and buckling optimization of thin plates with BEM. In: Archive of Applied Mechanics (2012)

    Article  Google Scholar 

  7. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. (2015). https://doi.org/10.1007/s00707-015-1308-4

    Article  MathSciNet  Google Scholar 

  8. Thai, H.T., Choi, D.H.: Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl. Math. Model. 37, 8310–8323 (2013). https://doi.org/10.1016/j.apm.2013.03.038

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar, Y.: The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: a literature review. J. Vib. Control. 24, 1205–1227 (2018). https://doi.org/10.1177/1077546317694724

    Article  MathSciNet  MATH  Google Scholar 

  10. Liew, K.M., Xiang, Y., Kitipornchai, S., Meek, J.L.: Formulation of Mindlin–Engesser model for stiffened plate vibration. Comput. Methods Appl. Mech. Eng. (1995). https://doi.org/10.1016/0045-7825(94)00064-T

    Article  Google Scholar 

  11. Berry, A., Locqueteau, C.: Vibration and sound radiation of fluid-loaded stiffened plates with consideration of in-plane deformation. J. Acoust. Soc. Am. (2005). https://doi.org/10.1121/1.415880

    Article  Google Scholar 

  12. Thinh, T.I., Khoa, N.N.: Free vibration analysis of stiffened laminated plates using a new stiffened element. Science (80) (2008)

  13. Mukherjee, A., Mukhopadhyay, M.: Finite element free vibration of eccentrically stiffened plates. Comput. Struct. (1988). https://doi.org/10.1016/0045-7949(88)90195-2

    Article  Google Scholar 

  14. Bhimaraddi, A., Carr, A.J., Moss, P.J.: Finite element analysis of laminated shells of revolution with laminated stiffeners. Comput. Struct. (1989). https://doi.org/10.1016/0045-7949(89)90153-3

    Article  Google Scholar 

  15. Harik, I.E., Guo, M.: Finite element analysis of eccentrically stiffened plates in free vibration. Comput. Struct. (1993). https://doi.org/10.1016/0045-7949(93)90012-3

    Article  Google Scholar 

  16. Patel, S.N., Datta, P.K., Sheikh, A.H.: Parametric study on the dynamic instability behavior of laminated composite stiffened plate. J. Eng. Mech. (2009). https://doi.org/10.1061/(asce)0733-9399(2009)135:11(1331)

  17. Zeng, H., Bert, C.W.: A differential quadrature analysis of vibration for rectangular stiffened plates. J. Sound Vib. 241, 247–252 (2001). https://doi.org/10.1006/jsvi.2000.3295

    Article  Google Scholar 

  18. Peng, L.X., Liew, K.M., Kitipornchai, S.: Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. J. Sound Vib. (2006). https://doi.org/10.1016/j.jsv.2005.02.023

    Article  Google Scholar 

  19. Tamijani, A.Y., Kapania, R.K.: Vibration analysis of curvilinearly-stiffened functionally graded plate using element free galerkin method. Mech. Adv. Mater. Struct. (2012). https://doi.org/10.1080/15376494.2011.572240

    Article  Google Scholar 

  20. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996). https://doi.org/10.1016/0013-7944(94)00175-8

    Article  Google Scholar 

  21. Cawley, P., Adams, R.D.: The location of defects in structures from measurements of natural frequencies. J. Strain Anal. Eng. Des. (1979). https://doi.org/10.1243/03093247V142049

    Article  Google Scholar 

  22. Bachene, M., Tiberkak, R., Rechak, S.: Vibration analysis of cracked plates using the extended finite element method. Arch. Appl. Mech. (2009). https://doi.org/10.1007/s00419-008-0224-7

    Article  Google Scholar 

  23. Guan-Liang, Q., Song-Nian, G., Jie-Sheng, J.: A finite element model of cracked plates and application to vibration problems. Comput. Struct. (1991). https://doi.org/10.1016/0045-7949(91)90056-R

    Article  Google Scholar 

  24. Chen, L., Xue, J., Zhang, Z., Zhang, W.: Bifurcation study of thin plate with an all-over breathing crack. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/1509384

    Google Scholar 

  25. Yuan, J., Dickinson, S.M.: The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh–Ritz method. J. Sound Vib. (1992). https://doi.org/10.1016/0022-460X(92)90450-C

    Article  Google Scholar 

  26. Yuan, J., Young, P.G., Dickinson, S.M.: Natural frequencies of circular and annular plates with radial or circumferential cracks. Comput. Struct. (1994). https://doi.org/10.1016/0045-7949(94)90205-4

    Article  Google Scholar 

  27. Liew, K.M., Hung, K.C., Lim, M.K.: A solution method for analysis of cracked plates under vibration. Eng. Fract. Mech. (1994). https://doi.org/10.1016/0013-7944(94)90130-9

    Article  Google Scholar 

  28. Huang, C.S., Leissa, A.W.: Vibration analysis of rectangular plates with side cracks via the Ritz method. J. Sound Vib. 323, 974–988 (2009). https://doi.org/10.1016/j.jsv.2009.01.018

    Article  Google Scholar 

  29. Huang, C.S., Leissa, A.W., Li, R.S.: Accurate vibration analysis of thick, cracked rectangular plates. J. Sound Vib. 330, 2079–2093 (2011). https://doi.org/10.1016/j.jsv.2010.11.007

    Article  Google Scholar 

  30. Huang, C.S., McGee, I.G., Chang, M.J.: Vibrations of cracked rectangular FGM thick plates. Compos. Struct. (2011). https://doi.org/10.1016/j.compstruct.2011.01.005

    Article  Google Scholar 

  31. Dang, T.D., Kapania, R.K.: Ritz approach for buckling prediction of cracked-stiffened structures. J. Aircr. (2013). https://doi.org/10.2514/1.c032173

    Article  Google Scholar 

  32. Milazzo, A., Oliveri, V.: Post-buckling analysis of cracked multilayered composite plates by pb-2 Rayleigh–Ritz method. Compos. Struct. 132, 75–86 (2015). https://doi.org/10.1016/j.compstruct.2015.05.007

    Article  Google Scholar 

  33. Milazzo, A., Oliveri, V.: Buckling and postbuckling of stiffened composite panels with cracks and delaminations by Ritz approach. AIAA J. 55, 965–980 (2017). https://doi.org/10.2514/1.J055159

    Article  Google Scholar 

  34. Bhat, R.B.: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh–Ritz method. J. Sound Vib. (1985). https://doi.org/10.1016/S0022-460X(85)80109-7

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Natural Science Foundation of China (Grant U1808214), the Fundamental Research Funds for the Central Universities of China (Grant DUT18ZD22), and the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning. We would like to thank the anonymous reviewers for their helpful advises on the first draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wang, Y. Free vibration analysis of a flat stiffened plate with side crack through the Ritz method. Arch Appl Mech 89, 2089–2102 (2019). https://doi.org/10.1007/s00419-019-01565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01565-6

Keywords

Navigation