Skip to main content

Advertisement

Log in

Using a multifaceted approach to reveal avian community responses to natural and anthropogenic effects in a fragmented Southern Mistbelt Forest system, South Africa

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Forest loss and fragmentation are major drivers of biodiversity decline globally. However, with the widely recognised notion that biodiversity is multifaceted, few studies have assessed the responses of different diversity metrics to forest landscape changes.

Objectives

Here, we used a multifaceted approach to assess the effects of landscape composition, forest fragmentation (patch-level) and local habitat heterogeneity on avian alpha-diversity (taxonomic, functional, phylogenetic and functional-phylogenetic diversity) of different ecological groups.

Methods

We conducted fixed-radius point-count surveys across 32 Southern Mistbelt Forest fragments of southern KwaZulu-Natal and northern Eastern Cape, South Africa. Using linear mixed-effect models, we related multiple facets of bird diversity to landscape composition (i.e., matrix quality), habitat fragmentation (i.e., isolation distance and fragment-size) and local habitat heterogeneity (i.e., forest-structural complexity).

Results

Matrix quality was a significant positive predictor of functional (FRic, sesFRic) and phylogenetic (sesPD) diversity of forest-dependent (forest specialist) species and functional diversity (FRic) of the whole community. Habitat fragmentation had significantly negative effects (i.e. increasing isolation distance and decreasing fragment size) on multiple diversity facets of all ecological groups, but non-forest-dependent (forest generalist) species showed no responses to isolation distance. Unexpectedly, diversity facets of forest-dependent species declined with increasing local vegetation complexity.

Conclusions

Large and connected forest fragments are vital for maintaining avian diversity facets and promoting local vegetation complexity could contribute to the loss of forest-dependent species (forest specialists) in the naturally fragmented Southern Mistbelt Forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data belong to the University of KwaZulu-Natal and are stored there. They are available from the corresponding author upon reasonable request.

References

  • Bregman TP, Sekercioglu CH, Tobias JA (2014) Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biol Conserv 169:372–383

  • Adie H, Rushworth I, Lawes MJ (2013) Pervasive, long-lasting impact of historical logging on composition, diversity and above ground carbon stocks in Afrotemperate forest. For Ecol Manag 310:887–895

    Article  Google Scholar 

  • Allouche O, Kalyuzhny M, Moreno-Rueda G, Pizarro M, Kadmon R (2012) Area–heterogeneity tradeoff and the diversity of ecological communities. Proc Natl Acad Sci 109:17495–17500

  • Armstrong AJ, Benn G, Bowland AE, Goodman PS, Johnson DN, Maddock AH, Scott-Shaw CR (1998) Plantation forestry in South Africa and its impact on biodiversity. South Afr for J 182:59–65

    Google Scholar 

  • Astudillo PX, Schabo DG, Siddons DC, Farwig N (2019) Patch-matrix movements of birds in the páramo landscape of the southern Andes of Ecuador. Emu 119:53–60

    Article  Google Scholar 

  • Athayde EA, Cancian LF, Verdade LM, Morellato LPC (2015) Functional and phylogenetic diversity of scattered trees in an agricultural landscape: implications for conservation. Agric Ecosyst Environ 199:272–281

    Article  Google Scholar 

  • Bae S, Müller J, Lee D, Vierling KT, Vogeler JC, Vierling LA, Hudak AT, Latifi H, Thorn S (2018) Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sens Environ 215:145–156

    Article  Google Scholar 

  • Banks-Leite C, Ewers RM, Metzger JP (2012) Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes. Ecology 93:2560–2569

    Article  PubMed  Google Scholar 

  • Bartlett LJ, Newbold T, Purves DW, Tittensor DP, Harfoot MB (2016) Synergistic impacts of habitat loss and fragmentation on model ecosystems. Proc Royal Soc B 283:20161027

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1406–5823

    Article  Google Scholar 

  • Belcik M, Lenda M, Amano T, Skórka P (2020) Different response of the taxonomic, phylogenetic and functional diversity of birds to forest fragmentation. Sci Rep 10:1–11

    Article  CAS  Google Scholar 

  • Berliner DD (2009) Systematic conservation planning for South Africa's forest biome: An assessment of the conservation status of South Africa's forests and recommendations for their conservation. PhD Dissertation, University of Cape Town

  • Biz M, Cornelius C, Metzger JPW (2017) Matrix type affects movement behavior of a Neotropical understory forest bird. Perspect Ecol Conserv 15:10–17

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Boesing AL, Nichols E, Metzger JP (2018a) Biodiversity extinction thresholds are modulated by matrix type. Ecography 41:1520–1533

    Article  Google Scholar 

  • Boesing AL, Nichols E, Metzger JP (2018b) Land use type, forest cover and forest edges modulate avian cross-habitat spillover. J Appl Ecol 55:1252–1264

    Google Scholar 

  • Brown M (2006) Annual and seasonal trends in avifaunal species richness in a coastal lowlands forest reserve in South Africa. Ostrich 77:58–66

    Article  Google Scholar 

  • Bueno AS, Dantas SM, Henriques LMP, Peres CA (2018) Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Divers Distrib 24:387–402

    Article  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol Letters 16:1234–1244

    Article  Google Scholar 

  • Calba S, Maris V, Devictor V (2014) Measuring and explaining large-scale distribution of functional and phylogenetic diversity in birds: separating ecological drivers from methodological choices. Glob Ecol Biogeogr 23:669–678

    Article  Google Scholar 

  • Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126

    Article  Google Scholar 

  • Chapman PM, Tobias JA, Edwards DP, Davies RG (2018) Contrasting impacts of land-use change on phylogenetic and functional diversity of tropical forest birds. J Appl Ecol 55:1604–1614

    Article  Google Scholar 

  • Cianciaruso MV (2011) Update: Beyond taxonomical space: large-scale ecology meets functional and phylogenetic diversity. Front Biogeogr 3.

  • Cooper TJ, Wannenburgh AM, Cherry MI (2017) Atlas data indicate forest dependent bird species declines in South Africa. Bird Conserv Int 27:337–354

    Article  Google Scholar 

  • Cooper TJG, Norris KJ, Cherry MI (2020) A trait-based risk assessment of South African forest birds indicates vulnerability of hole-nesting species. Biol Conserv 252:108827. https://doi.org/10.1016/j.biocon.2020.108827

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Biol Conserv 14:342–355

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514

    Article  Google Scholar 

  • Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dormann C, Elith J, Bacher S, Buchmann CM, Carl G, Carr´e G, M´arquez J, Gruber B, Lafourcade B., Leit˜ao PJ, Münkemüller T, McClean CJ, Osborne P, Reineking B, Schr¨oder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL (2013) Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 28:605–613

    Article  PubMed  Google Scholar 

  • Eeley HA, Lawes MJ, Piper SE (1999) The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. J Biogeog 26:595–617

    Article  Google Scholar 

  • Ehlers Smith YC, Ehlers Smith DA, Seymour CL, Thébault E, Van Veen FF (2015) Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landsc Ecol 30:1225–1239

    Article  Google Scholar 

  • Ehlers Smith DA, Ehlers Smith YC, Downs CT (2017) Indian Ocean coastal thicket is of high conservation value for preserving taxonomic and functional diversity of forest-dependent bird communities in a landscape of restricted forest availability. For Ecol Manag 390:157–165

    Article  Google Scholar 

  • Ehlers Smith DA, Si X, Ehlers Smith YC, Kalle R, Ramesh T, Downs CT (2018a) Patterns of avian diversity across a decreasing patch-size gradient in a critically endangered subtropical forest system. J Biogeog 45:2118–2132

    Article  Google Scholar 

  • Ehlers Smith DA, Si X, Ehlers Smith YC, Downs CT (2018b) Seasonal variation in avian diversity and tolerance by migratory forest specialists of the patch-isolation gradient across a fragmented forest system. Biodivers Conserv 27:3707–3727

    Article  Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2011) ArcGIS Desktop v10.2. Environmental Systems Research Institute, Redlands, CA

  • Environmental Systems Research Institute [ESRI] (2015) ArcGIS Desktop v10.2. Environmental Systems Research Institute, Redlands, CA

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeog 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Ann Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Letters 14:101–112

    Article  Google Scholar 

  • Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison SP, Jaeger JA, Koper N (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Faith DP (2008) Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv Biol 22:1461–1470

  • Farneda FZ, Rocha R, López-Baucells A, Sampaio EM, Palmeirim JM, Bobrowiec PE, Grelle CE, Meyer CF (2018) Functional recovery of Amazonian bat assemblages following secondary forest succession. Biol Conserv 218:192–199

    Article  Google Scholar 

  • Feng G, Zhang J, Girardello M, Pellissier V, Svenning JC (2020) Forest canopy height co-determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally. Glob Ecol Biogeogr 29:1350–1359

    Article  Google Scholar 

  • Filgueiras BK, Peres CA, Melo FP, Leal IR, Tabarelli M (2021) Winner-loser species replacements in human-modified landscapes. Trends Ecol Evol 36:545–555

    Article  PubMed  Google Scholar 

  • Fletcher RJ Jr, Reichert BE, Holmes K (2018) The negative effects of habitat fragmentation operate at the scale of dispersal. Ecology 99:2176–2186

    Article  PubMed  Google Scholar 

  • GeoTerraImage (2014) The 2013–14 South African National Land-cover dataset. Data layer for download from: https://egis.environment.gov.za/national_land_cover_data_sa. Accessed 28 April 2018

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:1500052

    Article  Google Scholar 

  • Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334

    Google Scholar 

  • Häkkilä M, Le Tortorec E, Brotons L, Rajasärkkä A, Tornberg R, Mönkkönen M (2017) Degradation in landscape matrix has diverse impacts on diversity in protected areas. PLoS ONE 12:e0184792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeog 42:989–993

    Article  Google Scholar 

  • Hanz DM, Böhning-Gaese K, Ferger SW, Fritz SA, Neuschulz EL, Quitián M, Santillán V, Töpfer T, Schleuning M (2019) Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. J Biogeogr 46:291–303

    Google Scholar 

  • Hockey PAR, Dean WRJ, Ryan PG (2005) Roberts birds of southern Africa. John Voelcker Bird Book Fund, South Africa

  • Holdaway RJ, Sparrow AD (2006) Assembly rules operating along a primary riverbed–grassland successional sequence. J Ecol 94:1092–1102

    Article  Google Scholar 

  • Kadmon R, Allouche O (2007) Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: a unification of island biogeography and niche theory. Am Nat 170:443–454

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil BT, Willig MR (2016) Community assembly in temperate forest birds: habitat filtering, interspecific interactions and priority effects. Evol Ecol 30:703–722

    Article  Google Scholar 

  • Laanisto L, Tamme R, Hiiesalu I, Szava-Kovats R, Gazol A, Pärtel M (2013) Microfragmentation concept explains non-positive environmental heterogeneity–diversity relationships. Oecologia 171:217–226

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv biol 16:605–618

    Article  Google Scholar 

  • Laurance WF, Camargo JL, Luizão RC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson GB, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67

  • Lawes MJ, Eeley HA, Piper SE (2000) The relationship between local and regional diversity of indigenous forest fauna in KwaZulu-Natal Province, South Africa. Biodivers Conserv 9:683–705

    Article  Google Scholar 

  • Lawes MJ, Eeley HA, Findlay NJ, Forbes D (2007a) Resilient forest faunal communities in South Africa: a legacy of palaeoclimatic change and extinction filtering? J Biogeogr 34:1246–1264

    Article  Google Scholar 

  • Lawes MJ, Griffiths ME, Boudreau S (2007b) Colonial logging and recent subsistence harvesting affect the composition and physiognomy of a podocarp dominated Afrotemperate forest. For Ecol Manag 247:48–60

    Article  Google Scholar 

  • Leaver J, Mulvaney J, Ehlers Smith, DA, Ehlers Smith YC, Cherry MI (2019) Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For Ecol Manag 445:82–95

  • Legras G, Loiseau N, Gaertner JC (2018) Functional richness: overview of indices and underlying concepts. Acta Oecol 87:34–44

    Article  Google Scholar 

  • Lopez B, Burgio K, Carlucci M, Palmquist K, Parada A, Weinberger V, Hurlbert A (2016) A new framework for inferring community assembly processes using phylogenetic information, relevant traits and environmental gradients. One Ecosyst 1:e9501. https://doi.org/10.3897/oneeco.1.e9501

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003

    Article  PubMed  Google Scholar 

  • Low AB, Rebelo AG (1996) Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism (DEAT), Pretoria, South Africa

  • Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J Veg Sci 20:377–391

    Article  Google Scholar 

  • Luther DA, Cooper WJ, Wolfe JD, Bierregaard RO Jr, Gonzalez A, Lovejoy TE (2020) Tropical forest fragmentation and isolation: Is community decay a random process? Glob Ecol Conserv 23:01168

    Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

  • MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Maseko MS, Zungu MM, Smith DAE, Smith YCE, Downs CT (2019) High microhabitat heterogeneity drives high functional traits in forest birds in five protected forest areas in the urban mosaic of Durban. South Africa Glob Ecol Conserv 18:00645

    Google Scholar 

  • Maseko MS, Zungu MM, Ehlers Smith DA, Ehlers Smith YC, Downs CT (2020) Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst 23:533–542

    Article  Google Scholar 

  • Mason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • Matthews TJ, Cottee-Jones HE, Whittaker RJ (2014) Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers Distrib 20:1136–1146

    Article  Google Scholar 

  • Matuoka MA, Benchimol M, Morante-Filho JC (2020) Tropical forest loss drives divergent patterns in functional diversity of forest and non-forest birds. Biotropica 52:738–748

    Article  Google Scholar 

  • Mazel F, Pennell MW, Cadotte MW, Diaz S, Dalla Riva GV, Grenyer R, Leprieur F, Mooers AO, Mouillot D, Tucker CM, Pearse WD (2018) Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat Commun 9:1–9

    Article  CAS  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Melo MA, Silva MAG, Piratelli AJ (2020) Improvement of vegetation structure enhances bird functional traits and habitat resilience in an area of ongoing restoration in the Atlantic Forest. An Acad Bras Cienc 92

  • Montealegre-Talero C, Boesing AL, Metzger JP (2021) Avian cross-habitat spillover as a bidirectional process modulated by matrix type, forest cover and fragment size. Agric Ecosyst Environ 322:107644

    Article  Google Scholar 

  • Morante-Filho JC, Faria D, Mariano-Neto E, Rhodes J (2015) Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS ONE 10:0128923

    Article  CAS  Google Scholar 

  • Morante-Filho JC, Arroyo-RodríguezV, de Andrade ER, Santos BA, Cazetta E, Faria D (2018) Compensatory dynamics maintain bird phylogenetic diversity in fragmented tropical landscapes. J Appl Ecol 55:256–266

    Article  Google Scholar 

  • Morante-Filho JC, Benchimol M, Faria D (2021) Landscape composition is the strongest determinant of bird occupancy patterns in tropical forest patches. Landsc Ecol 36:105–117

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Mucina L, Geldenhuys CJ (2006) Afrotemperate, subtropical and Azonal forests. In: Mucina L, Rutherford MC (ed) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria, pp 584–614

  • Müller J, Stadler J, Brandl R (2010) Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. Remote Sens Environ 114:490–495

    Article  Google Scholar 

  • Naeem S, Duffy J, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Neuschulz EL, Botzat A, Farwig N (2011) Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos 120:1371–1379

  • Neuschulz EL, Brown M, Farwig N (2013) Frequent bird movements across a highly fragmented landscape: the role of species traits and forest matrix. Anim Conserv 16:170–179

  • Newbold T, Scharlemann JP, Butchart SH, Şekercioğlu ÇH, Alkemade R, Booth PDW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B 280:20122131

    Article  PubMed  PubMed Central  Google Scholar 

  • Newbold T, Hudson LN, Phillips HR, Hill SL, Contu S, Lysenko I, Blandon A, Butchart SH, Booth HL, Day J, De Palma A (2014) A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc Royal Soc B 281:20141371

    Article  Google Scholar 

  • Oatley TB (1989) Biogeography of the forest avifauna in South Africa. In: Geldenhuys CJ (ed) Biogeography of the mixed evergreen forests of southern Africa. Foundation for Research Development (CSIR), Pretoria, pp 48–59

  • Olivier PI, van Aarde RJ, Lombard AT (2013) The use of habitat suitability models and species–area relationships to predict extinction debts in coastal forests. South Africa Divers Distrib 19:1353–1365

  • Pardini R, Faria D, Accacio GM, Laps RR, Mariano-Neto E, Paciencia ML, Dixo M, Baumgarten J (2009) The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Conserv 142:1178–1190

    Article  Google Scholar 

  • Pardini R, Bueno ADA, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearse WD, Cadotte MW, Cavender-Bares J, Ives AR, Tucker C, Walker SC, Helmus MR, (2015) pez: phylogenetics for the environmental sciences. R package version 1:0–0

  • Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985

    Article  PubMed  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SHM, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA (2016) Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLoS ONE 11:1–18

    Article  CAS  Google Scholar 

  • Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223

    Article  Google Scholar 

  • Prevedello JA, Gotelli NJ, Metzger JP (2016) A stochastic model for landscape patterns of biodiversity. Ecol Monogr 86:462–479

    Article  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair AR, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci 105:20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 13 August 2020

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Ries L, Fletcher RJ Jr, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Ries L, Murphy SM, Wimp GM, Fletcher RJ (2017) Closing persistent gaps in knowledge about edge ecology. Curr Landsc Ecol Rep 2:30–41

    Article  Google Scholar 

  • Ruffell J, Clout MN, Didham RK (2017) The matrix matters, but how should we manage it? Estimating the amount of high-quality matrix required to maintain biodiversity in fragmented landscapes. Ecography 40:171–178

    Article  Google Scholar 

  • Rurangwa ML, Aguirre-Gutiérrez J, Matthews TJ, Niyigaba P, Wayman JP, Tobias JA, Whittaker RJ (2021) Effects of land-use change on avian taxonomic, functional and phylogenetic diversity in a tropical montane rainforest. Divers Distrib. https://doi.org/10.1111/ddi.13364

    Article  Google Scholar 

  • Šálek M, Svobodová J, Zasadil P (2010) Edge effect of low-traffic forest roads on bird communities in secondary production forests in central Europe. Landsc Ecol 25:1113–1124

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schulze RE (2007) South African atlas of climatology and agrohydrology. Water Research Commission. WRC Report 1489/1/06, Pretoria, South Africa

  • Sekercioglu CH (2012) Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Ornithol 153:153–161

    Article  Google Scholar 

  • Si X, Cadotte MW, Zeng D, Baselga A, Zhao Y, Li J, Wu Y, Wang S, Ding P (2017) Functional and phylogenetic structure of island bird communities. J Anim Ecol 86:532–542

    Article  PubMed  Google Scholar 

  • Sitters H, York A, Swan M, Christie F, Di Stefano J (2016) Opposing responses of bird functional diversity to vegetation structural diversity in wet and dry forest. PLoS ONE 11:e0164917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skórka P, Lenda M, Sutherland WJ (2016) Response of young and adult birds to the same environmental variables and different spatial scales during post breeding period. Landsc Ecol 31:2063–2078

  • Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography 34:103–113

    Article  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529

    Article  CAS  PubMed  Google Scholar 

  • Symes CT, Wirminghaus JO, Downs CT (2002) Species richness and seasonality of forest avifauna in three South African afromontane forests. Ostrich 73:106–113

    Article  Google Scholar 

  • Tamme R, Hiiesalu I, Laanisto L, Szava-Kovats R, Pärtel M (2010) Environmental heterogeneity, species diversity and coexistence at different spatial scales. J Veg Sci 21:796–801

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopedia of biodiversity. Academia Press, San Diego, pp 109–120

    Chapter  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, Van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Article  Google Scholar 

  • Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715

    Article  PubMed  Google Scholar 

  • Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Article  Google Scholar 

  • Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Vogeler JC, Hudak AT, Vierling LA, Evans J, Green P, Vierling KT (2014) Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests. Remote Sens Environ 147:13–22

    Article  Google Scholar 

  • Von Maltitz GP, Mucina L, Geldenhuys CJ, Lawes MJ, Eeley HAC, Adie H, Vink, D, Fleming G Bailey C (2003) Classification system for South African indigenous forests: an objective classification for the department of water affairs and forestry, Report No. ENV-P-C 2003-017 CSIR, Pretoria

  • Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Glob Ecol Biogeogr 20:209–217

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Evol Syst 33:475–505

    Article  Google Scholar 

  • Wethered R, Lawes MJ (2003) Matrix effects on bird assemblages in fragmented Afromontane forests in South Africa. Biol Conserv 114:327–340

    Article  Google Scholar 

  • Wethered R, Lawes MJ (2005) Nestedness of bird assemblages in fragmented Afromontane forest: the effect of plantation forestry in the matrix. Biol Conserv 123:125–137

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals: ecological archives E095–178. Ecology 95:2027–2027

    Article  Google Scholar 

  • Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227

    Article  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Ecol Evol 28:199–204

    Article  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, University of Texas, Austin

Download references

Acknowledgements

We thank Mr Joyi and Mr Sqithi for their permission to work in the forests, Mr Ndlela for his help in the Kokstad area and Lereko Tsoananyane for the assistance in the field. We are most grateful for the constructive comments of the reviewers that improved our manuscript. The authors gratefully acknowledge Prof S. Willows-Munro for assistance with the phylogenetic analyses.

Funding

We are grateful to the University of KwaZulu-Natal (ZA), and the National Research Foundation (NRF, ZA, Grant 98404) for funding this project. We thank the Ford Wildlife Foundation (ZA) for vehicle support. SPN received a PhD bursary from the NRF (Grant SFH170707250535).

Author information

Authors and Affiliations

Authors

Contributions

SPN, CTD, DES and YES conceptualised the study. CTD sought funding. SPN, STG and MS collected the data. SPN analysed the data with assistance from DES. SPN wrote the draft manuscript. The other authors provided editorial input.

Corresponding author

Correspondence to Colleen T. Downs.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

All authors gave consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngcobo, S.P., Ehlers Smith, D.A., Gumede, S.T. et al. Using a multifaceted approach to reveal avian community responses to natural and anthropogenic effects in a fragmented Southern Mistbelt Forest system, South Africa. Landsc Ecol 37, 1885–1903 (2022). https://doi.org/10.1007/s10980-022-01450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-022-01450-8

Keywords

Navigation