Skip to main content
Log in

Thiosalicylic acid as a devulcanizing agent for mechano-chemical devulcanization

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mechano-chemical devulcanization process for vulcanized natural rubber (NV) was investigated. Thiosalicylic acid was used as a test devulcanizing agent in comparison to diphenyl disulfide as the reference. The optimum condition for devulcanization of NR vulcanizates (NVs) was found to be grinding of the NV and subsequent mixing with a selected devulcanizing agent at 140°C for 30 min. The degree of devulcanization was indicated by using sol-gel fractions of the devulcanized rubber (DVR). Revulcanized rubber was made by using virgin natural rubber (NR) containing DVR at different ratios. The tensile strength of the DVR/NV composite, after revulcanization, decreased by 5–10%, while the elongation at brake was improved by 5–10% at a DVR content of 5–15%. Devulcanization of industrial truck tires, as a typical sample of industrial products, was also demonstrated for the practical application of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Isayev, Science and technology of rubber, 3rd Ed., Elsevier, New York (2002).

    Google Scholar 

  2. A. A. Phadke, A. K. Bhattacharya, S.K. Chakraborty and S. K. De, Rubber Chem. Technol., 56, 726 (1983).

    CAS  Google Scholar 

  3. B. Klingensmith, Rubber World, 203, 16 (1991).

    CAS  Google Scholar 

  4. W. Klingensmith and K. Baranwal, Rubber World, 218, 41 (1998).

    CAS  Google Scholar 

  5. D. S. Novotny, R. L. Marsh, F. C. Masters and D.N. Tally, US patent, 4, 104205 (1978).

  6. C. H. Scuracchio, D. A. Waki and M. L.C. P. Silva, J. Therm. Anal. Calorim., 87, 893 (2007).

    Article  CAS  Google Scholar 

  7. A. H. Pelofsky, US patent, 3, 725314 (1973).

  8. A. I. Isayev, J. Chen and A. Tukachinsky, Rubber Chem. Technol., 68, 267 (1995).

    CAS  Google Scholar 

  9. J. Yun, J. S. Oh and A. I. Isayev, Rubber Chem. Technol., 74, 317 (2001).

    CAS  Google Scholar 

  10. W. Feng and A. I. Isayev, Polym. Eng. Sci., 46, 8 (2006).

    Article  CAS  Google Scholar 

  11. M. Tapale and A. I. Isayev, J. Appl. Polym. Sci., 70, 2007 (1998).

    Article  CAS  Google Scholar 

  12. B. Adhikari, D. De and S. Maiti, Prog. Polym. Sci., 25, 909 (2000).

    Article  CAS  Google Scholar 

  13. M. Kojima, K. Ogawa, H. Mizoshima, M. Tosaka, S. Kohjiya and Y. Ikeda, Rubber Chem. Technol., 76, 957 (2003).

    CAS  Google Scholar 

  14. M. Kojima, M. Tosaka and Y. Ikeda, Green Chem., 6, 84 (2004).

    Article  CAS  Google Scholar 

  15. M. Kojima, S. Kohjiya and Y. Ikeda, Polymer, 46, 2016 (2005).

    Article  CAS  Google Scholar 

  16. M. Kojima, M. Tosaka, Y. Ikeda and S. Kohjiya, J. Appl. Polym. Sci., 95, 137 (2005).

    Article  CAS  Google Scholar 

  17. J. R. Kershaw, Fuel, 77, 1113 (1998).

    Article  CAS  Google Scholar 

  18. A. Tsuchii, T. Suzuki and K. Takeda, Appl. Environ. Microbiol., 50, 965 (1985).

    CAS  Google Scholar 

  19. O. Holst, B. Stenberg and M. Christiansson, Biodegradation, 9, 301 (1998).

    Article  CAS  Google Scholar 

  20. J. K. Kim and J.W. Park, J. Appl. Polym. Sci., 72, 1543 (1999).

    Article  CAS  Google Scholar 

  21. K. Bredberg, J. Persson, M. Christiansson, B. Stenberg and O. Holst, Appl. Microbiol. Biotechnol., 55, 43 (2001).

    Article  CAS  Google Scholar 

  22. S. Sato, Y. Honda, M. Kuwahara, H. Kishimoto, N. Yagi, K. Muraoka and T. Watanabe, Biomacromolecules., 5, 511 (2004).

    Article  CAS  Google Scholar 

  23. G. K. Jana and C. K. Das, Macromol. Res., 13, 30 (2005).

    CAS  Google Scholar 

  24. G. K. Jana and C. K. Das, Polym. Plast. Technol. Eng., 44, 1399 (2005).

    Article  CAS  Google Scholar 

  25. G.K. Jana, R.N. Mahaling and C.K. Das, J. Appl. Polym. Sci., 99, 2831 (2006).

    Article  CAS  Google Scholar 

  26. P. J. Flory and Jr. J. Rehner, J. Chem. Phys., 11, 521 (1943).

    Article  CAS  Google Scholar 

  27. C. J. Sheehan and A. L. Bisio, Rubber Chem. Technol., 39, 149 (1966).

    CAS  Google Scholar 

  28. C.M. Blow and C. Hepburn, Rubber technology and manufacture, W. Cooper, G. M. Doyle, C. Hepburn and G. C. Sweet, Eds., Butterworth Scientific, London (1982).

    Google Scholar 

  29. J. A. Brydson, Rubbery material and their compounds, Elsevier Applied Science, New York (1988).

    Google Scholar 

  30. F. Cavalieri, F. Padella and F. Cataldo, J. Appl. Polym. Sci., 90, 1631 (2003).

    Article  CAS  Google Scholar 

  31. K.H. Lee and D.H. Shin, Korean J. Chem. Eng., 23, 209 (2006).

    Article  CAS  Google Scholar 

  32. P. Tasakorn and W. Amatyakul, Korean J. Chem. Eng., 25, 1532 (2008).

    Article  CAS  Google Scholar 

  33. D. De, A. Das, D. De, B. Dey, S.C. Debnath and B. C. Roy, Eur. Polym. J., 42, 917 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirilux Poompradub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaicharoen, P., Thamyongkit, P. & Poompradub, S. Thiosalicylic acid as a devulcanizing agent for mechano-chemical devulcanization. Korean J. Chem. Eng. 27, 1177–1183 (2010). https://doi.org/10.1007/s11814-010-0168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0168-9

Key words

Navigation