Skip to main content
Log in

Effect of lamellar terminations on the physicomechanical properties of eutectic composites

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. I. Vladimirov, M. Yu. Gutkin, S. P. Nikanorov, and A. E. Romanov, “Defects of the lamellar structure of directionally solidified eutectic composites,” Mekh. Kompozitn. Mater., No. 4, 730–733 (1986).

    Google Scholar 

  2. G. C. Weatherly, “An electron-microscope investigation of the lamellar Al-CuAl2 eutectic,” Met. Sci. J.,2, 25–27 (1968).

    Google Scholar 

  3. I. G. Davies and A. Hellawell, “The structure of directionally frozen Al-CuAl2 eutectic alloy,” Philos. Mag., 19, No. 162, 1285–1297 (1969).

    Google Scholar 

  4. A. Pattnaik and A. Lawley, “Deformation and fracture in Al-CuAl2 eutectic composites,” Met. Trans., No. 6, 1529–1536 (1971).

    Google Scholar 

  5. P. Annarumma and M. Turpin, “Structure and high temperature mechanical behavior of Ni-Ni3Nb unidirectional eutectic,” Met. Trans.,3, No. 1, 137–146 (1972).

    Google Scholar 

  6. A. Lawley and M. G. Kozak, “Effect of the interphase surface on the characteristics of a composite in the elastoplastic region,” in: Composite Materials [Russian translation], Vol. 1, Moscow (1978), pp. 231–265.

    Google Scholar 

  7. R. Hertzberg, “Interphase surfaces in directionally solidified eutectics,” in: Composite Materials [Russian translation], Vol. 1, Moscow (1978), pp. 353–385.

    Google Scholar 

  8. T. A. Wall, W. W. Predebon, and B. J. Pletka, “The interaction between yield stress and lamellar termination density in cobalt-aluminum eutectic composites,” in: Advances in Aerospace Structures, Materials, and Dynamics, Symposium on Composites, Boston, Massachusetts (1973), pp. 209–214.

  9. A. S. Yue, F. W. Crossman, A. E. Vidoz, and M. I. Jacobson, “Controlled microstructures of Al-CuAl2 eutectic composites and their compressive properties,” Trans. AIME,242, No. 12, 2441–2452 (1968).

    Google Scholar 

  10. F. W. Crossman, A. S. Yue, and A. E. Vidoz, “Tensile properties of unidirectionally solidified Al-CuAl2 eutectic composites,” Trans. AIME,245, No. 2, 397–406 (1969).

    Google Scholar 

  11. H. R. Bertorello and H. Biloni, “Structure and heat treatment influence on the tensile properties of Al-CuAl2 eutectic composites,” Met. Trans.,3, No. 1, 73–82 (1972).

    Google Scholar 

  12. V. L. Indenbom, “Failure criteria in dislocations theories of strength,” Fiz. Tverd. Tela,3, No. 7, 2071–2079 (1961).

    Google Scholar 

  13. A. G. Sveshnikov and A. N. Tikhonov, Theory of Functions of Complex Variable [in Russian], Moscow (1979).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 450–456, May–June, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladimirov, V.I., Gutkin, M.Y. & Romanov, A.E. Effect of lamellar terminations on the physicomechanical properties of eutectic composites. Mech Compos Mater 23, 313–319 (1987). https://doi.org/10.1007/BF00811689

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811689

Keywords

Navigation