Skip to main content
Log in

Boiling heat transfer performance of plain and porous tubes in falling film flow of refrigerant R114

Wärmeübergang beim Sieden in vertikaler Rieselfilm-Strömung für glatte und poröse Rohre mit Kältemittel R114

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The falling film flow characteristic and heat transfer performance of four types of commercially available porous tubes (High flux tube by Union Carbide, Gewa-T, Wieland, Thermoexcel-E and -EC by Hitachi) were compared with an ordinary sand-blasted tube and a plain copper tube. The test evaporator consisted of a single 2 m vertical tube. The evaporating liquid was refrigerant R 114 flowing down the outside of the test tube. Flow observations were made by high-speed photography. Nucleate boiling was dominant in all the tests with porous surfaces. No boiling hysteresis was observed. All structured surfaces showed an excellent performance compared with plain tube.

Thermoexcel-E had the highest heat transfer coefficient, 12 times better than smooth tube. Ordinary sand-blasted tube could not compete with porous surfaces. Its performance during surface evaporation was nevertheless 1.4 to 1.8 times and during nucleation 1.7 times higher.

Zusammenfassung

Die Charakteristik und der Wärmeübergang in einer Riesel-Film-Strömung für vier verschiedene kommerzielle Rohre mit porösen Oberflächen (High flux-Rohr von Union Carbide, Gewa-T von Wieland, Thermoexcel-E und -EC von Hitachi) wurden mit einem gewöhnlichen ebenen und einem sandbestrahlten Rohr verglichen. Der Versuchsverdampfer war ein einzelnes vertikales Rohr, 2 m lang. Die siedende Flüssigkeit war das Kältemittel R114 und strömte abwärts entlang der Außenfläche. Strömungsbeobachtungen wurden mit der Hochgeschwindigkeits-Kinematographie gemacht. Blasensieden war vorherrschend in allen Versuchen mit porösen Oberflächen. Es wurde keine Hysterese beobachtet. Alle strukturierten Flächen zeigten einen hervorragenden Wärmeübergang im Vergleich zur glatten Fläche. Thermoexcel-E hatte den besten Wärmeübergangskoeffizienten, 12mal besser als die glatte Fläche. Sandgestrahltes Rohr konnte nicht mit porösen Rohren konkurrieren. Jedoch war die Leistung bei konvektiver Verdampfung 1,4-bis l,8mal und bei Blasensieden l,7mal höher als für die glatte Oberfläche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

constant in Eq. (1)

d :

diameter, m

h :

heat transfer coefficient, W/m2 K

L :

evaporation length, m

m :

mass flowrate, kg/s

n :

exponent in Eq. (1)

Pr :

Prandtl number

q :

heat flux density, W/m2

Re :

Reynolds number=4m/dη

T :

temperature, K

Δ T :

temperature difference, K

λ :

thermal conductivity, W/Km

ν :

kinematic viscosity. m2/s

g :

gravity acceleration, 9.81 m/s2

h* :

(ν 2/g λ 3)1/3 h nondimensional heat transfer coefficient

η :

dynamic viscosity, kg/ms

References

  1. Nishikawa, K.; Ito, T.: Augmentation of nucleate boiling heat transfer by prepared surfaces. Ch. in Heat Transfer in Energy Problems. New York: Hemisphere 1983, pp. 119–126

    Google Scholar 

  2. Webb, R. L.: High performance heat transfer surfaces for boiling and condensation. Ch, in Heat Transfer in Energy Problems. New York: Hemisphere 1983, pp. 127–132

    Google Scholar 

  3. Nakayama, W.; Daikoku, T.; Kuwahara, H.; Nakajima, T.: Dynamic model of enhanced boiling heat transfer on porous surfaces. ASME J. Heat Transfer 102 (1980) 445–456

    Google Scholar 

  4. Nakayama, W.; Daikoku, T.; Kuwahara, H.; Kakizaki, K.: High-Flux heat transfer surface “Thermoexcel”. Hitachi Review 24 (1975) 329–334

    Google Scholar 

  5. Nakayama, W.; Daikoku, T.; Kuwahara, H.; Kakizaki, K.: Effects of pore diameters and system pressure on saturated pool nucleate boiling heat transfer from porous surfaces. ASME J. Heat Transfer 104 (1982) 286–291

    Google Scholar 

  6. Arshed, J.; Thome, J. R.: Enhanced boiling surfaces: Heat transfer mechanism mixture boiling. Proceedings of ASME/ JSME Thermal Engineering Joint Conference 1983. Honolulu, Hawaii, March 20–24, pp. 191–197

  7. Webb, R. L.; Eckert, E. R. G.; Goldstein, R. J.: Heat transfer and friction in tubes with repeated-rib roughness. Int. J. Heat Mass Transfer 14 (1971) 601–617

    Google Scholar 

  8. Chun, K. R.; Seban, R. A.: Heat transfer to evaporating liquid films. ASME J. Heat Transfer 93 (1971,) 391–396

    Google Scholar 

  9. Dukler, A. E.: Fluid mechanics and heat transfer in vertical falling-film systems. Chem. Eng. Progr. Symp. Series. Heat Transfer 56 (1960) 1–30

    Google Scholar 

  10. Struve, H.: Wärmeübergang an einen verdampfenden Riesel-film. VDI-Forschungsheft 534 (1969) 39

    Google Scholar 

  11. VDI-Wärmeatlas. Berechnungsblätter für den Wärmeübergang. Düsseldorf: VDI-Verlag 1984

  12. Davis, E. J.; Andersen, G. H.: The incipience of nucleate boiling in forced convection flow. AIChE Journal 12 (1966) 774–780

    Google Scholar 

  13. Nakayama, W.; Daikoku, T.; Nakajima, T.: Enhancement of boiling and evaporation on structured surface with gravity driven film flow of R11. Proceeding of Heat Transfer Conference. Munich 1982, pp. 409–414

  14. Gee, D. L.; Webb, R. L.: Forced convection heat transfer in helically rib-roughened tubes. Int. J. Heat Transfer 23 (1980) 1127–1136

    Google Scholar 

  15. Bergles, A. E.; Chyu, M. C.: Characteristics of nucleate pool boiling from porous metallic coatings. ASME J. Heat Transfer 104 (1982) 279–285

    Google Scholar 

  16. Fujita, T.; Ueda, T.: Heat transfer to falling liquid films and film breakdown. Int. J. Heat Mass Transfer 21 (1978) 97–118

    Google Scholar 

  17. Advanced Heat Transfer Technology with High Flux Tubing. Union Carbide Cat. F-4063 87-0117 10/79

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagerholm, N.E., Ghazanfari, A.R., Kivioja, K. et al. Boiling heat transfer performance of plain and porous tubes in falling film flow of refrigerant R114. Wärme- und Stoffübertragung 21, 343–353 (1987). https://doi.org/10.1007/BF01376289

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376289

Keywords

Navigation