Skip to main content
Log in

Microstructure and mechanical properties of Ti-40 Wt Pct Ta (Ti-15 At. Pct Ta)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Of the β-isomorphous Ti-X alloy systems, Ti-Ta is one of the least studied. In the current work, the microstructure and mechanical properties of Ti-40 wt pct Ta (Ti-15 at. pct Ta) are investigated. Annealing at 810 °C produces a two-phase microstructure consisting of Ti-richa idiomorphs in a continuous Ta-rich β matrix; this suggests the β-transus temperature is higher than indicated by the most recently published phase diagram. Water quenching from 810 °C causes the β phase to partially transform to orthorhombic martensite (α), while furnace cooling yields secondarya The primary α formed isothermally remains unchanged in both cases. Subsequent aging causes transformation of the martensite to type 1a plus residual β, with a corresponding increase in strength and decrease in ductility. The maximum ductility (20 pct elongation) occurs in the water-quenched condition in which metastable β is retained. Analysis of the true stresstrue strain data suggests that transformation-induced plasticity may contribute to the enhanced ductility of the water-quenched material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Collings:The Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, 1984.

    Google Scholar 

  2. J.L. Murray:Phase Diagrams of Binary Titanium Alloys, ASM INTERNATIONAL, Metals Park, OH, 1987.

    Google Scholar 

  3. D.J. Maykuth, H.R. Ogden, and R.I. Jaffee:JOM (Trans. AIME), 1953, Feb., pp. 231–37.

  4. D. Summers-Smith:J. Inst. Met., 1952, vol. 81, pp. 73–76.

    CAS  Google Scholar 

  5. P.B. Budberg and K.I. Shakova:Izv. Akad. Nauk SSSR, Neorg. Mater., 1967, vol. 3, pp. 656–60.

    Google Scholar 

  6. K.A. Bywater and J.W. Christian:Phil. Mag. A, 1972, vol. 25, pp. 1275–89.

    Article  CAS  Google Scholar 

  7. S.G. Fedotov, T.V. Chelidze, Y.K. Kovneristyy, and V.V. Sanadze:Phys. Met. Metall., 1986, vol. 62, pp. 109–13.

    Google Scholar 

  8. I.A. Bagariatskii, G.I. Nosova, and T.V. Tagunova:Sov. Phys. Dokl., 1959, vol. 3, p. 1014.

    Google Scholar 

  9. K.A. Bywater and J.W. Christian:Phil. Mag. A, 1972, vol. 25, pp. 1249–74.

    Article  CAS  Google Scholar 

  10. T. Yamane and J. Ueda:Acta Metall., 1966, vol. 14, pp. 348–49.

    Google Scholar 

  11. C.A. Luke, R. Taggart, and D.H. Polonis:Trans. ASM, 1964, vol. 57, pp. 142–49.

    Google Scholar 

  12. P.N. Nikitin and V.S. Mikheyev:Fiz. Met. Metalloved., 1969, vol. 28, pp. 1127–29.

    CAS  Google Scholar 

  13. W.J. Tomlinson and R. Rushton:J. Less-Common Met., 1986, vol. 115, pp. L1-L4.

    Article  Google Scholar 

  14. M. Hansen and H.D. Kessler:SAE Trans., 1953, vol. 61, pp. 640–49.

    Google Scholar 

  15. H.C. Cross:Met. Prog., 1949, March, pp. 356–58.

    Google Scholar 

  16. J. Breme and V. Wadewitz:Int. J. Oral Maxillofacial Implants, 1989, vol. 4 (2), pp. 113–18.

    CAS  Google Scholar 

  17. M.J. Blackburn and J.C. Williams:Trans. TMS-AIME, 1967, vol. 239, pp. 287–88.

    CAS  Google Scholar 

  18. S.L. Sass:Acta Metall., 1969, vol. 17, pp. 813–20.

    Article  CAS  Google Scholar 

  19. C.G. Rhodes and J.C. Williams:Metall. Trans. A, 1975, vol. 6A, pp. 2103–14.

    CAS  Google Scholar 

  20. J.C. Williams, B.S. Hickman, and D.H. Leslie:Metall. Trans., 1971, vol. 2, pp. 477–84.

    CAS  Google Scholar 

  21. A.J. Williams, R.W. Cahn, and C.S. Barrett:Acta Metall., 1954, vol. 2, pp. 117–28.

    Article  CAS  Google Scholar 

  22. W.G. Burgers:Physica, 1933, Ser. 2, vol. 1, pp. 561–86.

    Article  Google Scholar 

  23. M.J. Blackburn and J.C. Williams:Trans. TMS-AIME, 1968, vol. 242, pp. 2461–69.

    CAS  Google Scholar 

  24. S. Lampman:Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, p. 601.

    Google Scholar 

  25. T.W. Duerig, R.M. Middleton, G.T. Terlinde, and J.C. Williams: inTitanium ’80, Science and Technology Vol. 2, H. Kimura and O. Izumi, eds., TMS-AIME, New York, NY, 1980, pp. 1503–12.

    Google Scholar 

  26. M. Hida, E. Sukedai, Y. Yokohari, and A. Nagakawa: inTitanium ’80, Science and Technology Vol. 2, H. Kimura and O. Izumi, eds., TMS-AIME, New York, NY, 1980, pp. 1327–34.

    Google Scholar 

  27. M. Oka and Y. Taniguchi: inTitanium ’80, Science and Technology Vol. 1, H. Kimura and O. Izumi, eds., TMS-AIME, New York, NY, 1980, pp. 709–15.

    Google Scholar 

  28. N.S. Mishra, S. Mishra, and V. Ramaswamy:Metall. Trans. A, 1989, vol. 20A, pp. 2819–29.

    CAS  Google Scholar 

  29. C. Crussard:Rev. Met. Paris, 1953, vol. 10, pp. 697–710.

    Google Scholar 

  30. B. Jaoul:J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  Google Scholar 

  31. R.E. Reed-Hill, W.R. Cribb, and S.N. Monteiro:Metall. Trans., 1973, vol. 4, pp. 2665–67.

    CAS  Google Scholar 

  32. W.B. Morrison:Metall. Trans., 1971, vol. 2, pp. 331–32.

    CAS  Google Scholar 

  33. V. Chandrasekaran, R. Taggart, and D.H. Polonis:Metallography, 1972, vol. 5, pp. 393–98.

    Article  CAS  Google Scholar 

  34. S.A. Spachner and W. Rostoker:Trans. AIME, 1958, vol. 212, pp. 765–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotton, J.D., Bingert, J.F., Dunn, P.S. et al. Microstructure and mechanical properties of Ti-40 Wt Pct Ta (Ti-15 At. Pct Ta). Metall Mater Trans A 25, 461–472 (1994). https://doi.org/10.1007/BF02651588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651588

Keywords

Navigation