Skip to main content
Log in

Integer valued means

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In this paper, starting with the work of Kolmogorov on continuous means, we define the four properties, Symmetry, Internality, Monotonicity, and Associativity that a discrete mean should satisfy. An extremal mean is then a (discrete) mean whose output depends only on the maximum and minimum of the input set. We prove that any integer mean must be extremal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél J.: On mean values. Bull Amer. Math. Soc. 54, 392–400 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bemporad G.: Sul prinzipio della media arithmetica. Atti Accad. Naz. Lincei 6, 87–91 (1926)

    Google Scholar 

  3. Bennett, C., Holland, W.C., Székely, G.J.: (in preparation)

  4. Bernoulli, D.: Specimen theoriae novae de mensura sortis. Commentarii Academiae Imperialis Petropolitanae 5, 175–192 (1738). [English transl.: Exposition of a new theory on the measurement of risk, Econometrica 22(1954), 23–35.]

  5. Bhattacharya R., Patrangenaru V.: Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Stat. 31, 1–29 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bibby J.: Axiomatisations of the average and a further generalization of monotonic sequences. Glasg. Math. J. 15, 63–65 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buczolich Z., Székely G.J.: When is a weighted average of ordered sample elements a maximum likelihood estimator of the location parameter?. Adv. Appl. Math. 10, 439–456 (1989)

    Article  MATH  Google Scholar 

  8. Cauchy A.L.: Cours d’analyse de l’Ecole Royale Polytechnique I, Analyse algébrique. Deure, Paris (1821)

    Google Scholar 

  9. Chisini, O.: Sul concetto di media, Periodico di Matematiche 4, 106–116 (1929)

  10. de Finetti, B.: Sul concetto di meddia. Giornale dell’ Inst. Ital. d. Attarii, pp. 369–396 (1931)

  11. Fréchet M.: Les élements aléatoires de nature quelconque dans un espace distancié. Ann. de l’Institut Henri Poincaré 10, 215–310 (1948)

    Google Scholar 

  12. Gauss, K.F.: Theoria motus (theory of the motion of heavenly bodies moving around the Sun in conic sections). p. 244 (1809)

  13. Grabish M., Marichal J.-L., Mesiar R., Pap E.: Aggregation functions, number 127 in encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  14. Graziani R., Veronese P.: How to compute a mean? The Chisini approach and its applications. Am. Stat. 63(1), 33–36 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hardy G.H., Littlewood J.E., Plya G.: Inequalities (2nd edn). Cambridge University Press, Cambridge (1988)

    Google Scholar 

  16. Huygens C.: De Ratiociniis in Ludo Aleae, in Exercitationum Mathematicarum. Elsevir, Leiden (1657)

    Google Scholar 

  17. Kolmogorov A.N.: Sur la notion de la moyenne. Acad. Naz. Lincei Mem. Cl. Sci. Fiz. Mat. Natur. Sez. 12(6), 388–391 (1930)

    Google Scholar 

  18. Muliere P., Parmigiani G.: Utility and means in the 1930s. Stat. Sci. 8/4, 421–432 (1993)

    Article  MathSciNet  Google Scholar 

  19. Nagumo M.: Ueber eine Klasse von Mittelwerte. Jpn. J. Math. 7, 235–253 (1930)

    Google Scholar 

  20. Páles Zs.: On the characterization of quasiarithmetic means with weight function. Aequationes Mathematicae 32, 171–194 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schimmack R.: Der Satz vom aritmetischen Mittel in axiomatischer Begründung. Math. Ann. 68, 125–132 (1909)

    Article  MathSciNet  Google Scholar 

  22. Székely, G.J., Móri, T.F.: How to win if you can? In: Revesz, P. (ed) Limit Theorems in Probability and Statistics, vol 36. Coll. Math. Soc. J. Bolyai, pp. 791-806. Amsterdam, North Holland (1984)

  23. Székely G.J., Richards D.St.P.: The St. Petersburg paradox and the crash of the high-tech stocks in 2000. Am Stat. 58/3, 225–231 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor J. Székely.

Additional information

Virtue is the Mean Between Two Extremes (Aristotle: Nicomachean Ethics, Book II).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, C.D., Holland, W.C. & Székely, G.J. Integer valued means. Aequat. Math. 88, 137–149 (2014). https://doi.org/10.1007/s00010-013-0217-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-013-0217-7

Mathematics Subject Classification

Keywords

Navigation