Skip to main content
Log in

Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier–Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain \(\Omega \subset \mathbb {R}^3\) under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], \(0<T<\infty \), obtained via an asymptotic expansion in the viscosity parameter, such that the difference between the linearized Navier–Stokes solution and the proposed expansion vanishes as the viscosity tends to zero in \(L^2(\Omega )\) uniformly in time, and remains bounded independently of viscosity in the space \(L^2([0,T];H^1(\Omega ))\). We make this construction both for a 3D channel domain and a smooth domain with a curved boundary. The zero-viscosity limit for LNSE, that is, the convergence of the LNSE solution to the solution of the linearized Euler equations around the same profile when viscosity vanishes, then naturally follows from the validity of this asymptotic expansion. This article generalizes and improves earlier works, such as Temam and Wang (Indiana Univ Math J 45(3):863–916, 1996), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479–541, 1999), and Gie (Commun Math Sci 12(2):383–400, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K.: An Introduction to Fluid Dynamics, paperback edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Cannon, J.R.: The One-Dimensional Heat Equation, volume 23 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, With a foreword by Felix E. Browder (1984)

  3. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  Google Scholar 

  4. Gie, G.-M.: Asymptotic expansion of the Stokes solutions at small viscosity: the case of non-compatible initial data. Commun. Math. Sci. 12(2), 383–400 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gie, G.-M., Hamouda, M., Temam, R.: Boundary layers in smooth curvilinear domains: parabolic problems. Discrete Contin. Dyn. Syst. 26(4), 1213–1240 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Gie, G.-M., Jung, C.-Y., Temam, R.: Recent progresses in boundary layer theory. Discrete Contin. Dyn. Syst. 36(5), 2521–2583 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Gie, G.-M., Kelliher, J.P.: Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions. J. Differ. Equ. 253(6), 1862–1892 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Grenier, E., Guo, Y., Nguyen, T.T.: Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Guo, Y., Nguyen, T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Vol. 2 of Math. Sci. Res. Inst. Publ., pp. 85–98. Springer, New York (1984)

  11. Klingenberg, W.: A course in differential geometry. Springer, New York, Translated from the German by David Hoffman, Graduate Texts in Mathematics, Vol. 51 (1978)

  12. Koch, H.: Transport and instability for perfect fluids. Math. Ann. 323(3), 491–523 (2002)

    Article  MathSciNet  Google Scholar 

  13. Lions, J.-L.: Perturbations singulières dans les Problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, vol. 323. Springer, Berlin (1973)

    MATH  Google Scholar 

  14. Lombardo, M.C., Sammartino, M.: Zero viscosity limit of the Oseen equations in a channel. SIAM J. Math. Anal. 33(2), 390–410 (2001)

    Article  MathSciNet  Google Scholar 

  15. Maekawa, Y., Mazzucato, A.: The Inviscid Limit and Boundary Layers for Navier–Stokes Flows, pp. 1–48. Springer International Publishing, Cham (2016)

    Google Scholar 

  16. Prandtl, L.: Verber flüssigkeiten bei sehr kleiner reibung. Verk. III Intem. Math. Kongr. Heidelberg, pp. 484–491, (1905), Teuber, Leibzig

  17. Sohr, H.: The Navier–Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881]

  18. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI, Theory and numerical analysis, Reprint of the 1984 edition (2001)

  19. Temam, R., Wang, X.: Asymptotic analysis of Oseen type equations in a channel at small viscosity. Indiana Univ. Math. J. 45(3), 863–916 (1996)

    Article  MathSciNet  Google Scholar 

  20. Temam, R., Wang, X.: Boundary layers for Oseen’s type equation in space dimension three. Russian J. Math. Phys. 5(2), 227–246 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Temam, R., Wang, X.M.: Asymptotic analysis of the linearized Navier–Stokes equations in a channel. Differ. Integral Equ. 8(7), 1591–1618 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Xin, Z., Yanagisawa, T.: Zero-viscosity limit of the linearized Navier–Stokes equations for a compressible viscous fluid in the half-plane. Commun. Pure Appl. Math. 52(4), 479–541 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gung-Min Gie.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Communicated by S. Shkoller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gie, GM., Kelliher, J.P. & Mazzucato, A.L. Boundary Layers for the Navier–Stokes Equations Linearized Around a Stationary Euler Flow. J. Math. Fluid Mech. 20, 1405–1426 (2018). https://doi.org/10.1007/s00021-018-0371-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0371-8

Keywords

Mathematics Subject Classification

Navigation