Skip to main content
Log in

Recognition of Sulfides Zones in Marble Mine Through Comparative Analysis of Electrical Tomography Arrangements

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper involves the use of Induced Polarization method combined with the geological reconnaissance of sulfite rich zones from the comparative analysis of the Dipole–dipole, Schlumberger and Wenner tomographic arrays. The study area comprises a marble mine with metandesites in dykes, sills, and a system of fractures, with enrichment of iron and copper, particularly costly and difficult to explore and study using traditional means of drilling and sampling. In this context, 5 lines of electrical tomography were performed in the three geoelectrical sites previously mentioned. The geophysical data enabled the production of 2D inversion models, later incorporated into 3D visualization models. The correlation between the geological information and the 3D models indicated the characterization of zones with sulfites, with chargeability values over 10 mV/V, and areas without sulfides by values of 1 mV/V. The Dipole–dipole array presented confusing results and anomalous areas displaced regarding the real position. Schlumberger array allowed the correlation between zone with disseminated sulfides and the zone without sulfide mineralization, although it was not possible to identify sulfides in joints and fractures. Wenner arrangement provided a direct correlation of all sulfide and waste zones, possibly due to the horizontal structure of propagation of the electrical and potential fields along the metandesite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted of CPRM (2000)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ABEM. (2012). Terrameter LS—instruction manual. Sundbyberg: ABEM Instrument.

    Google Scholar 

  • Alano, M. (1977). Pesquisa de calcário – Caieiras, Caçapava do Sul, RS. Relatório final. Porto Alegre: DNPM.

    Google Scholar 

  • Allis, R. G. (1990). Geophysical anomalies over epithermal systems. Journal of Geochemical Exploration,36, 339–374.

    Article  Google Scholar 

  • Companhia de Pesquisa e Recursos Minerais - CPRM. (1995). Folha Passo do Salsinho (22-Y-A-I-4), Rio Grande do Sul, escala 1:50.000. Programa Levantamentos Geológicos Básicos do Brasil. Brasília: CPRM.

    Google Scholar 

  • Companhia de Pesquisa e Recursos Minerais - CPRM. (2000). Folha Cachoeira do Sul, Rio Grande do Sul, escala 1:250.000. Brasília: CPRM.

    Google Scholar 

  • Côrtes, A. R. P., Moreira, C. A., Veloso, D. I. K., Vieira, L. B., & Bergonzoni, F. A. (2016). Geoelectrical prospecting for a copper-sulfide mineralization in the Camaquã sedimentary basin, Southern Brazil. Geofísica Internacional,55, 107–117.

    Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines. Agronomy Journal,95, 455–471.

    Article  Google Scholar 

  • Dahlin, T. (2000). Short note on electrode charge-up effects in DC resistivity data acquisition using multi-electrode arrangements. Geophysical Prospecting,48, 181–187.

    Article  Google Scholar 

  • Dena, O. S., Griselda, O. C., Doser, D., Leyva, J. E., Rascon, E., Gómez, F., et al. (2012). Using subsurface geophysical methods in flood control: A resistivity survey to define underground storage capacity of a sand body in Ciudad Juárez, Mexico. Geofísica Internacional,51, 225–249.

    Google Scholar 

  • Furman, A., Ferre, T. P. A., & Warrick, A. W. (2003). A sensitivity analysis of electrical resistivity tomography arrangement types using analytical element modeling. Vadose Zone Journal,2, 416–423.

    Article  Google Scholar 

  • Idziak, A. F., & Dibuel, R. (2011). Geophysics in mining and environmental protection. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Irvine, R. J., & Smith, M. J. (1990). Geophysical exploration for epithermal gold deposits. Journal of Geochemical Exploration,36, 375–412.

    Article  Google Scholar 

  • Keller, G. V., & Frishknecht, F. (1970). Electrical methods in geophysical prospecting. Oxford: Pergamon Press.

    Google Scholar 

  • Locke, C. A., Johnson, S. A., Cassidy, J., & Mauk, J. L. (1999). Geophysical exploration of the Puhipuhi epithermal area, Northland, New Zealand. Journal of Geochemical Exploration,65, 91–109.

    Article  Google Scholar 

  • Loke, M. H., & Baker, R. D. (1996). Rapid least squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophysical Prospecting,44, 131–152.

    Article  Google Scholar 

  • Lowrie, W. (2007). Fundamentals of geophysics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Ministry of mine and energy—MME. (2009). Perfil do calcário. Brasília: MME.

    Google Scholar 

  • Ministry of Mines and Energy – MME. (2016). Geologia, Mineração e Transformação Mineral, Brasília: MME. http://www.mme.gov.br/web/guest/secretarias/geologia-mineracao-e-transformacao-mineral/pagina-inicial. Accessed 10 Oct 2018

  • Moon, C. J., Whateley, M. E. G., & Evans, A. M. (2006). Introduction to mineral exploration. Oxford: Backwell Publishing.

    Google Scholar 

  • Moreira, C. A., Carrara, A., Helene, L. P. I., Hansen, M. A. F., Malagutti Filho, W., & Dourado, J. C. (2017a). Electrical resistivity tomography (ERT) applied in the detection of inorganic contaminants in suspended aquifer in Leme city (Brazil). Revista Brasileira de Geofísica,35, 213–225.

    Google Scholar 

  • Moreira, C. A., Helene, L. P. I., & Côrtes, A. R. P. (2017b). DC resistivity method applied in the monitoring of diesel leakage in a railway accident in São Manuel city, São Paulo State (Brazil). Revista Brasileira de Geofísica,35, 5–14.

    Google Scholar 

  • Moreira, C. A., Lopes, S. M., Schweig, C., & Seixas, A. R. (2012). Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul State, Brazil. Revista Brasileira de Geofísica,30, 169–179.

    Article  Google Scholar 

  • Moreira, C. A., Paes, R. A., Ilha, L. M., & Bitencourt, J. C. (2018). Reassessment of copper mineral occurrence through electrical tomography and pseudo 3D modeling in Camaquã Sedimentary Basin. Southern Brazil: Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2019-2.

    Book  Google Scholar 

  • Moreira, C. A., Reis, S. S., Malagutti Filho, W., & Hansen, M. A. F. (2016). Geoelectric modeling of supergenic manganese occurrence in Heliodora region, southern Minas Gerais. Revista Brasileira de Geofísica,34, 299–308.

    Article  Google Scholar 

  • Mussett, A. E., & Khan, M. A. (2000). Looking into the Earth: An introduction to geological geophysics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Nyquist, J. E., Peake, J. S., & Roth, M. J. S. (2007). Comparison of an optimized resistivity arrangement with dipole-dipole soundings in karst terrain. Geophysics,72, 139–144.

    Article  Google Scholar 

  • Oates, J. A. H. (2008). Lime and limestone: chemistry and technology, production and uses. Berlin: Wiley.

    Google Scholar 

  • Ramalho, E. C., Carvalho, J. P., Gonçalves, R., & Santos, F. A. M. (2012). Understanding the 3D Structure of a Thermal Water Fissured Granite Aquifer by Use of Geophysical Studies. Pure and Applied Geophysics,169, 2031–2046.

    Article  Google Scholar 

  • Samouëlian, A., Cousin, I., Richard, G., Tabbagh, A., & Bruand, A. (2003). Electrical Resistivity Imaging for Detecting Soil Cracking at the centimetric scale. Soil Science Society of America Journal,67, 1319–1326.

    Article  Google Scholar 

  • Sampaio, J. A., & Almeida, S. L. M. (2005). Rochas & Minerais Industriais: Usos e Especificações. Rio de Janeiro: CETEM.

    Google Scholar 

  • Santos, E. G., Neto, R. O., Abichequer, L. A., Souza, L. E., Marques, R., & Gonçalves, I. G. (2015). Recuperação ambiental na disposição de estéril em mineração de calcário. Revista do Centro de Ciências Naturais e Exatas,14, 14–32.

    Google Scholar 

  • Sequeira Gómez, L., & Escolero Fuentes, O. (2010). The application of electrical methods in exploration for ground water resources in the River Malacatoya sub-basin, Nicaragua. Geofísica Internacional,49, 27–41.

    Google Scholar 

  • Silva, M. A., Moreira, C. A., Borssatto, K., Ilha, L. M., & Santos, S. F. (2018). Geophysical prospection in tin mineral occurrence associated to greisen in granite São Sepé (RS). REM International Engineering Journal,71, 183–189.

    Article  Google Scholar 

  • Sultan, S. A., Mansour, S. A., Santos, F. M., & Helaly, A. S. (2009). Geophysical exploration for gold and associated minerals, case study: Wadi ElBeida area, South Eastern Desert, Egypt. Journal of Geophysics and Engineering,6, 345–356.

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Veloso, D. I. K., Moreira, C. A., & Côrtes, A. R. P. (2015). Integration of geoelectrical methods in the diagnostic of a diesel contaminated site in Santa Ernestina (SP, Brazil). Revista Brasileira de Geofísica,33(4), 667–676.

    Google Scholar 

  • Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofísica Internacional,55, 107–117.

    Google Scholar 

  • Ward, S. H. (Ed.) (1990) Resistivity and induced polarization methods. In: Geotechnical and environmental geophysics, I: Review and Tutorial. (pp. 147–189) Tulsa, Oklahoma: Society of Exploration Geophysicists.

  • Wellmer, F. W., Dalheimer, M., & Wagner, M. (2008). Economic evaluations in exploration. Berlin: Springer-Verlag.

    Google Scholar 

  • Zhou, Q. Y., Shimada, J., & Sato, A. (2001). Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research,37, 273–285.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Council for Scientific and Technological Development (CNPq), for the financial support whereby process number 470821/2013-2 (Edital Universal—CNPq), and the Pampa Federal University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Augusto Moreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C.A., dos Santos, E.G., Ilha, L.M. et al. Recognition of Sulfides Zones in Marble Mine Through Comparative Analysis of Electrical Tomography Arrangements. Pure Appl. Geophys. 176, 4907–4920 (2019). https://doi.org/10.1007/s00024-019-02243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02243-y

Keywords

Navigation