Skip to main content
Log in

Approximation Results in Orlicz Spaces for Sequences of Kantorovich Max-Product Neural Network Operators

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the theory of the so-called Kantorovich max-product neural network operators in the setting of Orlicz spaces \(L^{\varphi }\). The results here proved, extend those given by Costarelli and Vinti (Results Math 69(3):505–519, 2016), to a more general context. The main advantage in studying neural network type operators in Orlicz spaces relies in the possibility to approximate not necessarily continuous functions (data) belonging to different function spaces by a unique general approach. Further, in order to derive quantitative estimates in this context, we introduce a suitable K-functional in \(L^{\varphi }\) and use it to provide an upper bound for the approximation error of the above operators. Finally, examples of sigmoidal activation functions have been considered and studied in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastassiou, G.A., Coroianu, L., Gal, S.G.: Approximation by a nonlinear Cardaliaguet–Euvrard neural network operator of max-product kind. J. Comput. Anal. Appl. 12(2), 396–406 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Angeloni, L., Vinti, G.: Approximation with respect to Goffman–Serrin variation by means of non-convolution type integral operators. Numer. Funct. Anal. Optim. 31, 519–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angeloni, L., Vinti, G.: Approximation in variation by homothetic operators in multidimensional setting. Differ. Integral Equ. 26(5–6), 655–674 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Asdrubali, F., Baldinelli, G., Bianchi, F., Costarelli, D., Rotili, A., Seracini, M., Vinti, G.: Detection of thermal bridges from thermographic images by means of image processing approximation algorithms. Appl. Math. Comput. 317, 160–171 (2018)

    MathSciNet  Google Scholar 

  5. Asdrubali, F., Baldinelli, G., Bianchi, F., Costarelli, D., Evangelisti, L., Rotili, A., Seracini, M., Vinti, G.: A model for the improvement of thermal bridges quantitative assessment by infrared thermography. Appl. Energy 211, 854–864 (2018)

    Article  Google Scholar 

  6. Ball, K.R., Grant, C., Mundy, W.R., Shafera, T.J.: A multivariate extension of mutual information for growing neural networks. Neural Netw. 95, 29–43 (2017)

    Article  Google Scholar 

  7. Bardaro, C., Karsli, H., Vinti, G.: Nonlinear integral operators with homogeneous kernels: Pointwise approximation theorems. Appl. Anal. 90(3–4), 463–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardaro, C., Mantellini, I.: On convergence properties for a class of Kantorovich discrete operators. Numer. Funct. Anal. Optim. 33(4), 374–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9. Walter De Gruyter, New York (2003)

    Book  MATH  Google Scholar 

  10. Bede, B., Coroianu, L., Gal, S.G.: Approximation By Max-Product Type Operators. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-34189-7

    Book  MATH  Google Scholar 

  11. Boccuto, A., Bukhvalov, A.V., Sambucini, A.R.: Inequalities in classical spaces with mixed norms. Positivity 6(4), 393–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boccuto, A., Candeloro, D., Sambucini, A.R.: Vitali-type theorems for filter convergence related to Riesz space-valued modulars and applications to stochastic processes. J. Math. Anal. Appl. 419(2), 818–838 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boccuto, A., Candeloro, D., Sambucini, A.R.: \(L^p\) spaces in vector lattices and applications. Math. Slov. 67(6), 1409–1426 (2017)

    MATH  Google Scholar 

  14. Bono-Nuez, A., Bernal-Ruíz, C., Martín-del-Brío, B., Pérez-Cebolla, F.J., Martínez-Iturbe, A.: Recipient size estimation for induction heating home appliances based on artificial neural networks. Neural Comput. Appl. 28(11), 3197–3207 (2017)

    Article  Google Scholar 

  15. Candeloro, D., Sambucini, A.R.: Filter convergence and decompositions for vector lattice-valued measures. Mediterr. J. Math. 12(3), 621–637 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, F., Chen, Z.: The approximation operators with sigmoidal functions. Comput. Math. Appl. 58(4), 758–765 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, F., Chen, Z.: The construction and approximation of a class of neural networks operators with ramp functions. J. Comput. Anal. Appl. 14(1), 101–112 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Cao, F., Liu, B., Park, D.S.: Image classification based on effective extreme learning machine. Neurocomputing 102, 90–97 (2013)

    Article  Google Scholar 

  19. Cheang, G.H.L.: Approximation with neural networks activated by ramp sigmoids. J. Approx. Theory 162, 1450–1465 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Coroianu, L., Gal, S.G.: Approximation by nonlinear generalized sampling operators of max-product kind. Sampl. Theory Signal Image Process. 9(1–3), 59–75 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Coroianu, L., Gal, S.G.: Approximation by max-product sampling operators based on sinc-type kernels. Sampl. Theory Signal Image Process. 10(3), 211–230 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Coroianu, L., Gal, S.G.: Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels. Sampl. Theory Signal Image Process. 11(1), 113–132 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Coroianu, L., Gal, S.G.: Saturation and inverse results for the Bernstein max-product operator. Period. Math. Hung. 69, 126–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Coroianu, L., Gal, S.G.: \(L^p\)-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejer kernel. J. Integral Equ. Appl. 29(2), 349–364 (2017)

    Article  MATH  Google Scholar 

  25. Costarelli, D.: Neural network operators: constructive interpolation of multivariate functions. Neural Netw. 67, 28–36 (2015)

    Article  Google Scholar 

  26. Costarelli, D., Minotti, A.M., Vinti, G.: Approximation of discontinuous signals by sampling Kantorovich series. J. Math. Anal. Appl. 450(2), 1083–1103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Costarelli, D., Spigler, R.: Solving Volterra integral equations of the second kind by sigmoidal functions approximation. J. Integral Equ. Appl. 25(2), 193–222 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Costarelli, D., Spigler, R.: A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equ. Appl. 26(1), 15–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Costarelli, D., Spigler, R.: How sharp is the Jensen inequality? J. Inequal. Appl. 2015(69), 1–10 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Costarelli, D., Vinti, G.: Degree of approximation for nonlinear multivariate sampling Kantorovich operators on some functions spaces. Numer. Funct. Anal. Optim. 36(8), 964–990 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Costarelli, D., Vinti, G.: Approximation by max-product neural network operators of Kantorovich type. Results Math. 69(3), 505–519 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Costarelli, D., Vinti, G.: Max-product neural network and quasi-interpolation operators activated by sigmoidal functions. J. Approx. Theory 209, 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Costarelli, D., Vinti, G.: Pointwise and uniform approximation by multivariate neural network operators of the max-product type. Neural Netw. 81, 81–90 (2016)

    Article  MATH  Google Scholar 

  34. Costarelli, D., Vinti, G.: Saturation classes for max-product neural network operators activated by sigmoidal functions. Results Math. 72(3), 1555–1569 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Costarelli, D., Vinti, G.: Convergence for a family of neural network operators in Orlicz spaces. Math. Nachr. 290(2–3), 226–235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Costarelli, D., Vinti, G.: Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting. Math. Slovaca 67(6), 1469–1480 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Costarelli, D., Vinti, G.: Estimates for the neural network operators of the max-product type with continuous and p-integrable functions. Results Math. (2018). https://doi.org/10.1007/s00025-018-0790-0

  38. Gotleyb, D., Lo Sciuto, G., Napoli, C., Shikler, R., Tramontana, E., Wozniak, M.: Characterization and modeling of organic solar cells by using radial basis neural networks. In: Artificial Intelligence and Soft Computing, pp. 91–103 (2016) https://doi.org/10.1007/978-3-319-39378-0_9

  39. Lai, G., Liu, Z., Zhang, Y., Philip Chen, C.L.: Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 18–31 (2016)

    Article  MathSciNet  Google Scholar 

  40. Liu, P., Wang, J., Zeng, Z.: Multistability of delayed recurrent neural networks with Mexican hat activation functions. Neural Comput. 29(2), 423–457 (2017)

    Article  Google Scholar 

  41. Livingstone, D.J.: Artificial Neural Networks: Methods and Applications (Methods in Molecular Biology). Humana Press, New York (2008)

    Google Scholar 

  42. Maiorov, V.: Approximation by neural networks and learning theory. J. Complex. 22(1), 102–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics. Springer, Berlin (1983)

  44. Musielak, J., Orlicz, W.: On modular spaces. Studia Math. 28, 49–65 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  45. Olivera, J.J.: Global exponential stability of nonautonomous neural network models with unbounded delays. Neural Netw. 96, 71–79 (2017)

    Article  Google Scholar 

  46. Peetre, J.: A new approach in interpolation spaces. Studia Math. 34, 23–42 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rister, B., Rubin, D.L.: Piecewise convexity of artificial neural networks. Neural Netw. 94, 34–45 (2017)

    Article  Google Scholar 

  48. Sahoo, A., Xu, H., Jagannathan, S.: IEEE Trans Adaptive neural network-based event-triggered control of single-input single-output nonlinear discrete-time systems. Neural Netw. Learn. Sys. 27(1), 151–164 (2016)

    Article  Google Scholar 

  49. Stamov, G., Stamova, I.: Impulsive fractional-order neural networks with time-varying delays: almost periodic solutions. Neural Comput. Appl. 28(11), 3307–3316 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors are partially supported by the “Department of Mathematics and Computer Science” of the University of Perugia (Italy), and by the GNAMPA-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Costarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costarelli, D., Sambucini, A.R. Approximation Results in Orlicz Spaces for Sequences of Kantorovich Max-Product Neural Network Operators. Results Math 73, 15 (2018). https://doi.org/10.1007/s00025-018-0799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0799-4

Keywords

Mathematics Subject Classification

Navigation