Skip to main content
Log in

Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This work is concerned with the gradient flow of absolutely p-homogeneous convex functionals on a Hilbert space, which we show to exhibit finite (\(p<2\)) or infinite extinction time (\(p \ge 2\)). We give upper bounds for the finite extinction time and establish sharp convergence rates of the flow. Moreover, we study next order asymptotics and prove that asymptotic profiles of the solution are eigenfunctions of the subdifferential operator of the functional. To this end, we compare with solutions of an ordinary differential equation which describes the evolution of eigenfunction under the flow. Our work applies, for instance, to local and non-local versions of PDEs like p-Laplacian evolution equations, the porous medium equation, and fast diffusion equations, herewith generalizing many results from the literature to an abstract setting. We also demonstrate how our theory extends to general homogeneous evolution equations which are not necessarily a gradient flow. Here, we discover an interesting integrability condition which characterizes whether or not asymptotic profiles are eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Strictly speaking, it was only shown in the absolutely 1-homogeneous case. However, the proof for general p works precisely the same.

References

  1. N. D. Alikakos and R. Rostamian. Lower bound estimates and separable solutions for homogeneous equations of evolution in Banach space. J. Differential Equations, 43(3):323–344, 1982.

    Article  MathSciNet  Google Scholar 

  2. F. Alter, V. Caselles, and A. Chambolle. A characterization of convex calibrable sets in. Mathematische Annalen, 332(2):329–366, 2005.

    Article  MathSciNet  Google Scholar 

  3. F. Andreu, V. Caselles, J. I. Díaz, and J. M. Mazón. Some qualitative properties for the total variation flow. Journal of functional analysis, 188(2):516–547, 2002.

    Article  MathSciNet  Google Scholar 

  4. F. Andreu, J. Mazón, J. Rossi, and J. Toledo. A nonlocal \(p\)-Laplacian evolution equation with Neumann boundary conditions. Journal de mathématiques pures et appliquées, 90(2):201–227, 2008.

    Article  MathSciNet  Google Scholar 

  5. F. Andreu-Vaillo, V. Caselles, J. M. Mazón, and J. M. Mazón. Parabolic quasilinear equations minimizing linear growth functionals, volume 223. Springer Science & Business Media, 2004.

    Book  Google Scholar 

  6. J. G. Berryman and C. J. Holland. Stability of the separable solution for fast diffusion. Archive for Rational Mechanics and Analysis, 74(4):379–388, 1980.

    Article  MathSciNet  Google Scholar 

  7. P. Blanc, C. Esteve, and J. D. Rossi. The evolution problem associated with eigenvalues of the Hessian. arXiv preprint arXiv:1901.01052, 2019.

  8. M. Bonforte and A. Figalli. Sharp extinction rates for fast diffusion equations on generic bounded domains. arXiv preprint arXiv:1902.03189, 2019.

  9. M. Bonforte, G. Grillo, and J. L. Vazquez. Behaviour near extinction for the fast diffusion equation on bounded domains. Journal de mathématiques pures et appliquées, 97(1):1–38, 2012.

    Article  MathSciNet  Google Scholar 

  10. F. Bozorgnia. Convergence of inverse power method for first eigenvalue of \(p\)-Laplace operator. Numerical Functional Analysis and Optimization, 37(11):1378–1384, 2016.

    Article  MathSciNet  Google Scholar 

  11. H. Brezis. Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, volume 5. Elsevier, 1973.

    MATH  Google Scholar 

  12. T. Bühler and M. Hein. Spectral clustering based on the graph \(p\)-Laplacian. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 81–88. ACM, 2009.

  13. L. Bungert and M. Burger. Solution paths of variational regularization methods for inverse problems. Inverse Problems, 35(10):105012, 2019.

    Article  MathSciNet  Google Scholar 

  14. L. Bungert, M. Burger, A. Chambolle, and M. Novaga. Nonlinear spectral decompositions by gradient flows of one-homogeneous functionals. arXiv preprint arXiv:1901.06979, 2019.

  15. L. Bungert, M. Burger, and D. Tenbrinck. Computing nonlinear eigenfunctions via gradient flow extinction. arXiv preprint arXiv:1902.10414, 2019.

  16. M. Burger, G. Gilboa, M. Moeller, L. Eckardt, and D. Cremers. Spectral decompositions using one-homogeneous functionals. SIAM Journal on Imaging Sciences, 9(3):1374–1408, 2016.

    Article  MathSciNet  Google Scholar 

  17. I. Cohen and G. Gilboa. Shape Preserving Flows and the p-Laplacian Spectra. working paper or preprint, Oct. 2018.

  18. M. G. Crandall and P. Benilan. Regularizing effects of homogeneous evolution equations. Technical report, WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER, 1980.

  19. T. M. Feld, J.-F. Aujol, G. Gilboa, and N. Papadakis. Rayleigh quotient minimization for absolutely one-homogeneous functionals. Inverse Problems, 2019.

  20. J. Ghidaglia and A. Marzocchi. Exact decay estimates for solutions to semilinear parabolic equations. Applicable analysis, 42(1-4):69–81, 1991.

    Article  MathSciNet  Google Scholar 

  21. M.-H. Giga, Y. Giga, and J. Saal. Nonlinear partial differential equations: Asymptotic behavior of solutions and self-similar solutions, volume 79. Springer Science & Business Media, 2010.

    Book  Google Scholar 

  22. D. Hauer and J. Mazón. Kurdyka-Łojasiewicz-Simon inequality for gradient flows in metric spaces. Trans. Amer. Math. Soc., 2019. To appear.

  23. D. Hauer and J. M. Mazón. Regularizing effects of homogeneous evolution equations: the case of homogeneity order zero. Journal of Evolution Equations, pages 1–32, 2019.

  24. R. Hynd and E. Lindgren. Approximation of the least Rayleigh quotient for degree p homogeneous functionals. Journal of Functional Analysis, 272(12):4873–4918, 2017.

    Article  MathSciNet  Google Scholar 

  25. P. Juutinen, P. Lindqvist, and J. J. Manfredi. The \(\infty \)-eigenvalue problem. Archive for rational mechanics and analysis, 148(2):89–105, 1999.

    Article  MathSciNet  Google Scholar 

  26. S. Kamin and J. L. Vázquez. Fundamental solutions and asymptotic behaviour for the \(p\)-Laplacian equation. Revista Matemática Iberoamericana, 4(2):339–354, 1988.

    Article  MathSciNet  Google Scholar 

  27. B. Kawohl and P. Lindqvist. Positive eigenfunctions for the p-Laplace operator revisited. Analysis-International Mathematical Journal of Analysis and its Application, 26(4):545, 2006.

    MathSciNet  MATH  Google Scholar 

  28. B. Kawohl and F. Schuricht. Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Communications in Contemporary Mathematics, 9(04):515–543, 2007.

    Article  MathSciNet  Google Scholar 

  29. N. Q. Le. The eigenvalue problem for the Monge-Ampère operator on general bounded convex domains. arXiv preprint arXiv:1701.05165, 2017.

  30. S. Littig and J. Voigt. Porous medium equation and fast diffusion equation as gradient systems. Czechoslovak Mathematical Journal, 65(4):869–889, 2015.

    Article  MathSciNet  Google Scholar 

  31. A. Mielke. Evolution of rate-independent systems. Evolutionary equations, 2:461–559, 2005.

    MathSciNet  MATH  Google Scholar 

  32. M. Portilheiro and J. L. Vázquez. Degenerate homogeneous parabolic equations associated with the infinity-Laplacian. Calculus of Variations and Partial Differential Equations, 46(3-4):705–724, 2013.

    Article  MathSciNet  Google Scholar 

  33. J. Sánchez. Asymptotic behavior of solutions of a \(k\)-Hessian evolution equation. arXiv preprint arXiv:1812.03207, 2018.

  34. G. Savaré and V. Vespri. The asymptotic profile of solutions of a class of doubly nonlinear equations. Nonlinear Analysis: Theory, Methods & Applications, 22(12):1553–1565, 1994.

    Article  MathSciNet  Google Scholar 

  35. M. F. Schmidt, M. Benning, and C.-B. Schönlieb. Inverse scale space decomposition. Inverse Problems, 34(4):045008, 2018.

    Article  MathSciNet  Google Scholar 

  36. D. Stan, F. del Teso, and J. L. Vázquez. Porous medium equation with nonlocal pressure. In Current Research in Nonlinear Analysis, pages 277–308. Springer, 2018.

  37. D. Stan and J. L. Vázquez. Asymptotic behaviour of the doubly nonlinear diffusion equation \(u_t={\Delta }_p u^m\) on bounded domains. Nonlinear Analysis: Theory, Methods & Applications, 77:1–32, 2013.

    Article  MathSciNet  Google Scholar 

  38. K. Tso. On a real Monge-A mpère functional. Inventiones mathematicae, 101(1):425–448, 1990.

    Article  MathSciNet  Google Scholar 

  39. E. Varvaruca. Exact rates of convergence as \(t\rightarrow \infty \) for solutions of nonlinear evolution equations. Journal of Evolution Equations, 4(4):543–565, 2004.

    Article  MathSciNet  Google Scholar 

  40. J. L. Vazquez. The Dirichlet problem for the porous medium equation in bounded domains. asymptotic behavior. Monatshefte für Mathematik, 142(1-2):81–111, 2004.

    Article  MathSciNet  Google Scholar 

  41. J. L. Vázquez. The Dirichlet problem for the fractional p-Laplacian evolution equation. Journal of Differential Equations, 260(7):6038–6056, 2016.

    Article  MathSciNet  Google Scholar 

  42. J. L. Vázquez. Asymptotic behaviour for the fractional heat equation in the Euclidean space. Complex Variables and Elliptic Equations, 63(7-8):1216–1231, 2018.

    Article  MathSciNet  Google Scholar 

  43. F. Yang and Z. Wei. Generalized Euler identity for subdifferentials of homogeneous functions and applications. Journal of Mathematical Analysis and Applications, 337(1):516–523, 2008.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 777826 (NoMADS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Bungert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Absolutely p-homogeneous convex functionals and their subdifferential

Proposition A.1

Let \(J:\mathcal {H}\rightarrow \mathbb {R}\cup \{\infty \}\) be absolutely p-homogeneous and convex. Then it holds

  1. 1.

    \(\mathcal {N}(J):=\{u\in \mathcal {H}\,:\,J(u)=0\}\) and \({\mathrm {dom}}(J):=\{u\in \mathcal {H}\,:\,J(u)<\infty \}\) are linear subspaces of \(\mathcal {H}\), referred to as null-space and effective domain of J.

  2. 2.

    \(\mathcal {N}(J)\) is closed if J is lower semi-continuous.

Proposition A.2

Under the conditions of Proposition A.1 it holds for any \(u\in \mathcal {H}\) that \(\partial J(u)\subset \mathcal {N}(J)^\perp \).

Proof

Using the definition of the subdifferential (1.2) for \(v=\pm v_0\in \mathcal {N}(J)\) together with (1.4) yields

$$\begin{aligned} |\langle \zeta ,v_0\rangle |\le (p-1)J(u),\quad \forall \zeta \in \partial J(u). \end{aligned}$$

However, due to the homogeneity (1.3) it holds \(c^{p-1}\zeta \in \partial J(c u)\) for all \(c>0\). Replacing \(\zeta \) by \(c^{p-1}\zeta \) and u by cu in the inequality above yields

$$\begin{aligned} |\langle \zeta ,v_0\rangle |\le c(p-1)J(u) \end{aligned}$$

after using the homogeneity of J and dividing by \(c^{p-1}\). Letting \(c\searrow 0\) concludes the proof. \(\square \)

The following Proposition states that the value of the functional J and its subdifferential is invariant under addition of a null-space element.

Proposition A.3

Let \(v_0\in \mathcal {N}(J)\), \(u\in \mathcal {H}\), and \(\zeta \in \partial J(u)\). Then it holds \(J(u)=J(u+v_0)\) and \(\zeta \in \partial J(u+v_0)\).

Proof

In the case \(p=1\) the statement has been proven in [14, 16]. In the case \(p>1\) one argues as follows: For every \(\zeta \in \partial J(u)\) it holds

$$\begin{aligned} pJ(u)=\langle \zeta ,u\rangle =\langle \zeta ,u+v_0\rangle \le J(u+v_0)+(p-1)J(u) \end{aligned}$$

which implies \(J(u)\le J(u+v_0)\). On the other hand, since J equals its bi-conjugate, it holds

$$\begin{aligned} J(u+v_0)=J^{**}(u+v_0)=\sup _{\zeta \in \mathcal {H}}\langle \zeta ,u+v_0\rangle -J^*(\zeta )=: \sup _{\zeta \in \mathcal {H}}H(\zeta ;u+v_0) \end{aligned}$$

where \(H(\zeta ;v):=\langle \zeta ,v\rangle -J^*(\zeta )\). For any \(\zeta \in \mathcal {H}\) which is a subgradient, we can use the orthogonality from Proposition A.2 together with the definition of the convex conjugate to infer

$$\begin{aligned} H(\zeta ;u+v_0)=\langle \zeta ,u+v_0\rangle -J^*(\zeta )=\langle \zeta ,u\rangle -J^*(\zeta )\le J(u). \end{aligned}$$

This implies that \(\sup _{\zeta \in \mathcal {S}}H(\zeta ;u+v_0)\le J(u)\), where \(\mathcal {S}\subset \mathcal {H}\) is given by

$$\begin{aligned} \mathcal {S}:=\bigcup _{u\in {\mathrm {dom}}(\partial J)}\partial J(u) \end{aligned}$$

and \({\mathrm {dom}}(\partial J):=\left\{ u\in \mathcal {H}\,:\,\partial J(u)\ne \emptyset \right\} \). Now it is classical [11] that, given the coercivity inequality (2.6) for \(p>1\), the operator \(\partial J\) is surjective, meaning that \(\mathcal {S}=\mathcal {H}\). Hence, we can conclude that

$$\begin{aligned} J(u+v_0)=\sup _{\zeta \in \mathcal {H}}H(\zeta ;u+v_0)=\sup _{\zeta \in \mathcal {S}}H(\zeta ;u+v_0)\le J(u). \end{aligned}$$

Having established \(J(u)=J(u+v_0)\) it is straightforward to show \(\zeta \in \partial J(u+v_0)\) using the definition of the subdifferential together with the orthogonality from Proposition A.2. \(\square \)

Gradient flow of absolutely p-homogeneous functionals

We conclude the “Appendix” by listing several important properties of the gradient flow (GF), starting with the existence theorem due to Brezis. To this end, we have to introduce the single-valued operator

$$\begin{aligned} \partial ^0 J(u)=\mathrm {arg}\min \left\{ \left\| \zeta \right\| \,:\,\zeta \in \partial J(u)\right\} , \quad u\in \mathcal {H}, \end{aligned}$$
(B.1)

which gives the subgradient with minimal norm in \(\partial J(u)\) and is well defined since the latter is a convex set.

Theorem B.1

(Brezis) Let \(J:\mathcal {H}\rightarrow \mathbb {R}\cup \{\infty \}\) be convex and lower semi-continuous and let \(f\in \mathcal {H}\). Then, there exists exactly one continuous map \(u:[0,\infty )\rightarrow \mathcal {H}\) which is Lipschitz continuous on \([\delta ,\infty ),\;\delta >0\) and right-differentiable on \((0,\infty )\) such that

  • \(u(0)=f\),

  • \(\zeta (t):=\partial _t^+ u(t)=-\partial J^0(u(t))\) for all \(t>0\),

  • \(t\mapsto J(u(t))\) is convex, non-increasing and Lipschitz continuous on \([\delta ,\infty ),\;\delta >0\) with

    $$\begin{aligned} \frac{\,\mathrm {d}^+}{\,\mathrm {d}t}J(u(t))=-\left\| \zeta (t) \right\| ^2,\quad t>0, \end{aligned}$$
    (B.2)

where \(\,\mathrm {d}^+/\,\mathrm {d}t\) and \(\partial _t^+\) denote right-derivatives and will be replaced by standard derivative symbols throughout the rest of this manuscript.

Proposition B.1

(Conservation of mass) Let u(t) solve the gradient flow (GF) with data f and let \(\overline{\cdot }:\mathcal {H}\rightarrow \mathcal {N}(J)\) denote the orthogonal projection onto \(\mathcal {N}(J)\). Then it holds \(\overline{u(t)}=\overline{f}\).

Proof

It holds

$$\begin{aligned} u(t)-f=-\int _0^t\zeta (s)\,\mathrm {d}s \end{aligned}$$

and from Proposition A.2 we deduce \(\overline{\zeta (s)}=0\) for all \(s>0\). Hence, also \(\overline{u(t)-f}=0\) which implies the statement due to linearity of the projection. \(\square \)

Proposition B.2

Let u(t) solve (GF) with data \(f-\overline{f}\in \mathcal {N}(J)^\perp \). Then \(v(t):=u(t)+\overline{f}\) solves (GF) with data f.

Proof

The proof reduces to checking whether \(-\partial _t v(t)=-\partial _t u(t)\in \partial J(v(t))\), which is true due to Proposition A.3. \(\square \)

Proposition B.3

Let u(t) denote the solution of the gradient flow (GF) corresponding to the absolutely p-homogeneous functional J and let \(f\in \mathcal {N}(J)^\perp \). Then it holds

$$\begin{aligned} u(t)\rightarrow 0,\quad&J(u(t))\rightarrow 0, \quad t\rightarrow \infty , \end{aligned}$$
(B.3)
$$\begin{aligned} \frac{\,\mathrm {d}}{\,\mathrm {d}t}\frac{1}{2}\left\| u(t) \right\| ^2&=-pJ(u(t)),\quad t>0. \end{aligned}$$
(B.4)

Proof

The proof for \(u(t)\rightarrow 0\) can be found in [14] and mainly relies on Proposition A.2. The statement \(J(u(t))\rightarrow 0\) is classical [11]. For (B.4) one uses the chain rule together with (1.4) to obtain

$$\begin{aligned} \frac{\,\mathrm {d}}{\,\mathrm {d}t}\frac{1}{2}\left\| u(t) \right\| ^2=\left\langle \partial _tu(t),u(t)\right\rangle =-\langle \zeta (t),u(t)\rangle =-pJ(u(t)). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bungert, L., Burger, M. Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type. J. Evol. Equ. 20, 1061–1092 (2020). https://doi.org/10.1007/s00028-019-00545-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00545-1

Mathematics Subject Classification

Keywords

Navigation