Skip to main content
Log in

“Fast” and “slow” pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Liquid Crystals are beautiful and mysterious

P.G. De Gennes.

After having learned to be precise, we must manage to be imprecise

A. Bierce.

Abstract

In this paper, it is proposed a model for deformable porous media saturated by compressible nematic liquid crystal subjected to slowly varying electric fields. from a mechanical point of view, we assume that such a system can be described by means of a Biot-type model and that the mechanical action of the NLC on the solid matrix can be modeled by means of a suitable modification of Biot constitutive equations for pore pressure only. The nonlinear nature of NLCs and the presence of bifurcations make the analysis particularly challenging. We prove that suitable electrical stimulus applied on the NLC specimen may induce both type of Biot waves, fast and slow, along with shear waves in the porous matrix. This effect may be of use when one may wish to damp mechanically induced pressure waves using Darcy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford (1995)

    Google Scholar 

  2. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  3. Kim, Y., Patel, J.: Acoustic generation in liquid crystals. Appl. Phys. Lett. 75, 1985 (1999)

    Article  Google Scholar 

  4. Greanya, V., Malanoski, A., Weslowski, B., Spector, M., Selinger, J.: Dynamics of the acousto-optic effect in a nematic liquid crystal. Liq. Cryst. 32(7), 933–941 (2005)

    Article  Google Scholar 

  5. Greanya, V., Spector, M., Selinger, J., Weslowski, B., Shashidhar, R.: Acousto-optic response of nematic liquid crystals. J. Appl. Phys. 94(12), 7571–7575 (2003)

    Article  Google Scholar 

  6. Malanoski, A., Greanya, V., Weslowski, B., Spector, M., Selinger, J., Shashidhar, R.: Theory of the acoustic realignment of nematic liquid crystals. Phys. Rev. E 69(2), 021705 (2004)

    Article  Google Scholar 

  7. Satiro, C., Vitoriano, C.: Director fluctuations in nematic liquid crystals induced by an ultrasonic wave. Phys. Rev. E 86(1), 011701 (2012)

    Article  Google Scholar 

  8. Selinger, J., Spector, M., Greanya, V., Weslowski, B., Shenoy, D., Shashidhar, R.: Acoustic realignment of nematic liquid crystals. Phys. Rev. E 66(5), 051708 (2002)

    Article  Google Scholar 

  9. Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19(34), 345703 (2008)

    Article  Google Scholar 

  10. Challamel, N., Rakotomanana, L., Le Marrec, L.: A dispersive wave equation using nonlocal elasticity. Comptes Rendus Mécanique 337(8), 591–595 (2009)

    Article  Google Scholar 

  11. dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Matteis, G., Virga, E.G.: Director libration in nematoacoustics. Phys. Rev. E 83(1), 001703 (2011)

    Article  MathSciNet  Google Scholar 

  13. Virga, E.G.: Variational theory for nematoacoustics. Phys. Rev. E 80(3), 031705 (2009)

    Article  Google Scholar 

  14. Rosi, G., Teresi, L., dell’Isola, F., DiCarlo, A.: Coupling between mass density and director arrangement in nematic liquid crystals. In: European Solid Mechanics Conference 2012, pp. 1–2, July 2012

  15. Khoo, I.-C.: Liquid Crystals. Wiley-Blackwell, Hoboken (2007)

    Book  Google Scholar 

  16. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28, 168 (1956)

    Article  MathSciNet  Google Scholar 

  17. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  MathSciNet  Google Scholar 

  18. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Continuum Mech. Thermodyn. 28, 215–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosi, G., Pouget, J., dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A-Solids 29(5), 859–870 (2010)

    Article  MathSciNet  Google Scholar 

  21. Baraldi, D., Reccia, E., Cazzani, A., Cecchi, A.: Comparative analysis of numerical discrete and finite element models: the case of in-plane loaded periodic brickwork. Compos. Mech. Comput. Appl. 4(4), 319–344 (2013)

    Article  Google Scholar 

  22. Bilotta, A., Turco, E.: A numerical study on the solution of the Cauchy problem in elasticity. Int. J. Solids Struct. 46(25–26), 4451–4477 (2009)

    Article  MATH  Google Scholar 

  23. Cazzani, A., Ruge, P.: Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Article  Google Scholar 

  24. Garusi, E., Tralli, A., Cazzani, A.: An unsymmetric stress formulation for reissner-mindlin plates: a simple and locking-free rectangular element. Int. J. Comput. Mater. Sci. Eng. 5(3), 589–618 (2004)

    Google Scholar 

  25. Greco, L., Cuomo, M.: Consistent tangent operator for an exact Kirchhoff rod model. Continuum Mech. Thermodyn. 27(4–5), 861–877 (2015)

  26. Presta, F., Hendy, C.R., Turco, E.: Numerical validation of simplified theories for design rules of transversely stiffened plate girders. Struct. Eng. 86(21), 37–46 (2008)

    Google Scholar 

  27. Cazzani, A.: On the true extrema of Youngs modulus in hexagonal materials. Appl. Math. Comput. 238, 397–407 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Cazzani, A., Ruge, P.: Symmetric matrix-valued transmitting boundary formulation in the time-domain for soil-structure interaction problems. Soil Dyn. Earthq. Eng. 57, 104–120 (2014)

    Article  Google Scholar 

  29. Cazzani, A., Ruge, P.: Stabilization by deflation for sparse dynamical systems without loss of sparsity. Mech. Syst. Signal Process. 70–71, 664–681 (2016)

    Article  Google Scholar 

  30. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MATH  Google Scholar 

  31. Greco, L., Cuomo, M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  Google Scholar 

  32. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  33. Cazzani, A., Malagò, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 28(1–2), 139–156 (2016)

  34. Cazzani, A., Malagò, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1–2), 139–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bilotta, A., Formica, G., Turco, E.: Performance of a high? Continuity finite element in threedimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)

    Article  MATH  Google Scholar 

  36. Alessandrini, G., Bilotta, A., Morassi, A., Rosset, E., Turco, E.: Computing volume bounds of inclusions by EIT measurements. J. Sci. Comput. 33(3), 293–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Alessandrini, G., Bilotta, A., Formica, G., Morassi, A., Rosset, E., Turco, E.: Numerical size estimates of inclusions in elastic bodies. Inverse Probl. 21(1), 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rizzi, N.L., Varano, V.: The effects of warping on the postbuckling behaviour of thin-walled structures. Thin-Walled Struct. 49(9), 1091–1097 (2011)

    Article  Google Scholar 

  39. Ruta, G.C., Varano, V., Pignataro, M., Rizzi, N.L.: A beam model for the flexural-torsional buckling of thin-walled members with some applications. Thin-Walled Struct. 46(7), 816–822 (2008)

    Article  Google Scholar 

  40. AminPour, H., Rizzi, N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4), 1027–1047 (2005)

    Article  Google Scholar 

  42. Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27(1–2), 261–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1: 2 internal resonance. J. Vib. Control 14(1–2), 135–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luongo, A., D’Annibale, F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Non-Linear Mech. 55, 128–139 (2013)

    Article  Google Scholar 

  45. Luongo, A., D’annibale, F.: Bifurcation analysis of damped visco-elastic planar beams under simultaneous gravitational and follower forces. Int. J. Mod. Phys. B 26(25), 1246015 (2012)

    Article  Google Scholar 

  46. Rizzi, N.L., Varano, V., Gabriele, S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin-Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  47. Bersani, A.M., Giorgio, I., Tomassetti, G.: Buckling of an elastic hemispherical shell with an obstacle. Continuum Mech. Thermodyn. 25(2–4), 443–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cecchi, Antonella, Rizzi, Nicola L.: Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids Struct. 38(1), 29–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Misra, A., Poorsolhjouy, P.: Micro-macro scale instability in 2D regular granular assemblies. Continuum Mech. Thermodyn. 27(1–2), 63–82 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Yang, Y., Ching, W.Y., Misra, A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  51. Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  52. dell’Isola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  MATH  Google Scholar 

  53. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

  54. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2D continuum model of a mixture of bone tissue and bio? Resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 94(12), 978–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Andreaus, U., Colloca, M., Iacoviello, D.: An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng. Pract. 20(6), 575–583 (2012)

    Article  Google Scholar 

  56. Giorgio, I., Andreaus, U., Lekszycki, T., Della, Corte A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bio-resorbable material mixture with voids. Math. Mech. Solids (2015). doi:10.1177/1081286515616052

  57. Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids (2016). doi:10.1177/1081286516644867

  58. Andreaus, U., Colloca, M., Iacoviello, D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Progr. Biomed. 113(1), 80–91 (2014)

    Article  Google Scholar 

  59. Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Piccardo, G., Ranzi, G., Luongo, A.: A direct approach for the evaluation of the conventional modes within the GBT formulation. Thin-Walled Struct. 74, 133–145 (2014)

    Article  Google Scholar 

  61. Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Continuum Mech. Thermodyn. 27(4–5), 507–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Luongo, A., Zulli, D.: A non-linear one-dimensional model of cross-deformable tubular beam. Int. J. Non Linear Mech. 66, 33–42 (2014)

    Article  Google Scholar 

  63. Selvadurai, P.A., Selvadurai, A.P.S.: On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos. Mag. 94(20), 2318–2338 (2014)

    Article  Google Scholar 

  64. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Mindlin, R.D., Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  66. Alibert, J.J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Enakoutsa, K., Della Corte, A., Giorgio, I.: A model for elastic flexoelectric materials including strain gradient effects. Math. Mech. Solids, 1081286515588638 (2015)

  68. Rosi, G., Madeo, A., Guyader, J.: Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)

    Article  Google Scholar 

  69. Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Sciarra, G., dell’Isola, F., Ianiro, N., Madeo, A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  71. dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la D? Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proceedings of the Royal Society A, vol. 471, No. 2183, p. 20150415. The Royal Society (2015)

  72. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  73. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  74. Giorgio, I., Galantucci, L., Della, Corte A., Del Vescovo, D.: Piezo-electromechanical Smart Materials with distributed arrays of Piezoelectric Transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051–1084 (2015)

    Article  Google Scholar 

  75. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization a la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  77. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. ZAMP - Zeitschrift für angewandte Mathematik und Physik/J. Appl. Math. Phys. (2016). doi:10.1007/s00033-016-0650-2

  78. Del Vescovo, D., Fregolent, A.: Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis. Mech. Syst. Signal Process. 23(7), 2312–2319 (2009)

    Article  Google Scholar 

  79. Misra, A., Singh, V.: Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech. Thermodyn. 27(4), 787–817 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. Roveri, N., Carcaterra, A.: Damage detection in structures under traveling loads by Hilbert–Huang transform. Mech. Syst. Signal Process. 28, 128–144 (2012)

    Article  Google Scholar 

  81. Andreaus, U., Baragatti, P.: Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 330(4), 721–742 (2011)

    Article  Google Scholar 

  82. Andreaus, U., Ceradini, G., D’Asdia, P., Gaudenzi, P.: Damage modelling and seismic response of simple degrading systems. Res Mech. 22(1), 79–100 (1987)

    Google Scholar 

  83. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112(1), 283–291 (2014)

    Article  Google Scholar 

  84. Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 93(12), 914–927 (2013)

    Article  MathSciNet  Google Scholar 

  85. Steigmann, D.J., Pipkin, A.C.: Wrinkling of pressurized membranes. J. Appl. Mech. 56(3), 624–628 (1989)

    Article  MATH  Google Scholar 

  86. Steigmann, D.J., Pipkin, A.C.: Finite deformations of wrinkled membranes. Q. J. Mech. Appl. Math. 42(3), 427–440 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  87. Altenbach, H., Eremeev, V.A., Morozov, N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45(3), 331–342 (2010)

    Article  Google Scholar 

  88. Misra, A., Huang, S.: Micromechanical stress-displacement model for rough interfaces: effect of asperity contact orientation on closure and shear behavior. Int. J. Solids Struct. 49(1), 111–120 (2012)

    Article  Google Scholar 

  89. Berezovski, A., Giorgio, I., Della, Corte A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Biscari, P., DiCarlo, A., Turzi, S.S.: Anisotropic wave propagation in nematic liquid crystals. Soft. Matter. 10(41), 8296–8307 (2014)

    Article  Google Scholar 

  91. Misra, A., Poorsolhjouy, P.: Granular micromechanics model of anisotropic elasticity derived from Gibbs potential. Acta Mech. 227(5), 1393–1413 (2016)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosi, G., Placidi, L. & dell’Isola, F. “Fast” and “slow” pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. Z. Angew. Math. Phys. 68, 51 (2017). https://doi.org/10.1007/s00033-017-0795-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0795-7

Keywords

Mathematics Subject Classification

Navigation