Skip to main content
Log in

PAPR Reduction in MIMO-OFDM by Using Active Partial Sequence

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Multiple-input multiple-output (MIMO) modeling through the use of orthogonal frequency division multiplexing (OFDM) offers a viable alternative to reduce bandwidth and simultaneously improves the quality of service of wireless mobile communication. One of the major concerns in the MIMO-OFDM system is the high peak-to-average power ratio (PAPR). In this article, a combinational scheme, active partial sequence (APS), is proposed to combat PAPR in MIMO-OFDM under Rayleigh fading environment. The key idea of the APS method is to combine the approximate gradient project followed by partial transmit sequence technique. The simulation results show that the proposed method achieves a significant reduction in PAPR and maintains the same data rate without sacrificing the BER performance over other conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.M. Alamouti, A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16, 1451–1458 (1998)

    Article  Google Scholar 

  2. J. Armstrong, Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. IEEE Electron. Lett. 38(8), 246–247 (2002)

    Article  Google Scholar 

  3. R.W. Bäuml, R.F.H. Fischer, J.B. Huber, Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. IEEE Electron. Lett. 32(22), 2056–2057 (1996)

    Article  Google Scholar 

  4. J.C. Chen, C.P. Li, Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems. IEEE Signal Process. Lett. 17(11), 933–936 (2010)

    Article  Google Scholar 

  5. Y.S. Cho, J. Kim, W.Y. Yang, C.G. Kang, MIMO-OFDM Wireless Communications with MATLAB (John Wiley & Sons (Asia) Pte Ltd, 2010)

  6. L.J. Cimini Jr, N.R. Sollenberger, Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Commun. Lett. 4(3), 86–88 (2000)

  7. P.V. Eetvelt, G. Wade, M. Tomlinson, Peak to average power reduction for OFDM schemes by selective scrambling. IEEE Electron. Lett. 32(21), 1963–1964 (1996)

    Article  Google Scholar 

  8. Y. Jabrane, V.P.G. Jimenez, A.G. Armeda, B.E. Said, A.A. Ouahman, Reduction of power envelope fluctuations in OFDM signals by using neural networks. IEEE Commun. Lett. 14(7), 599–601 (2010)

    Article  Google Scholar 

  9. T. Jiang, C. Ni, L. Gaun, A novel phase offset SLM scheme for PAPR reduction in Alamouti MIMO-OFDM systems without side information. IEEE Signal Process. Lett. 20(4), 383–386 (2013)

    Article  Google Scholar 

  10. T. Jiang, Y.W. Wu, An overview: peak to average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast. 54(2), 257–268 (2008)

    Article  Google Scholar 

  11. D. Jones, Peak power reduction in OFDM and DMT via active constellation extension, in Proceedings Asliomar Conference on Signals, Systems and Computers, vol. 2 (1999), pp. 1076–1079

  12. B.S. Krongold, D.L. Jones, PAR reduction in OFDM via active constellation extension. IEEE Trans. Broadcast. 49(3), 258–268 (2003)

    Article  Google Scholar 

  13. C.M. Li, Y.Y. Cheng, A low complexity partition dummy sequence insertion PAPR reduction method for the OFDM system. Wirel. Pers. Commun. 68(3), 949–961 (2013)

    Article  Google Scholar 

  14. X. Li, L.J. Cimini Jr, Effects of clipping and filtering on the performance of OFDM. IEEE Commun. Lett. 2(5), 131–133 (1998)

    Article  MATH  Google Scholar 

  15. D.-W. Lim, S.-J. Heo, J.-S. No, An overview of peak-to-average power ratio reduction schemes for OFDM signals. J. Commun. Netw. 11(3), 229–239 (2009)

    Article  Google Scholar 

  16. A. Mishra, R. Saxena, M. Patidar, OFDM link with a better performance using artificial neural network. Wirel. Pers. Commun. (2014). doi:10.1007/s11277-013-1593-y

  17. M.F. Naeiny, F. Marvasti, Selected mapping algorithm for PAPR reduction of frequency coded OFDM systems without side information. IEEE Trans. Veh. Technol. 60(3), 1211–1216 (2011)

    Article  Google Scholar 

  18. R.O. Neill, L.B. Lopes, Envelope variations and spectral in clipped multicarrier signals, in Proceedings IEEE PIMRC, Toronto, Canada, vol. 95 (1995), pp. 71–75

  19. K. Patterson, Generalized Reed–Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 46(6), 104–120 (2000)

    Article  Google Scholar 

  20. C. Tellambura, Improved phase factor computation for the PAR reduction of an OFDM signal using PTS. IEEE Commun. Lett. 5(4), 135–137 (2001)

    Article  Google Scholar 

  21. J. Tellado, Peak power reduction for multicarrier transmission, PhD thesis, University of Stanford, Stanford (1999)

  22. S.H. Wang, C.P. Li, A low complexity PAPR reduction scheme for SFBC MIMO-OFDM systems. IEEE Signal Process. Lett. 16(10), 941–944 (2009)

    Article  Google Scholar 

  23. Y. Wang, J. Ge, L. Wang, J. Li, Reduction of PAPR of OFDM signals using nonlinear companding transform. Wirel. Pers. Commun. (2012). doi:10.1007/s11277-012-0820-2

  24. C.E. Weng, C.W. Chang, C.H. Chen, H.L. Hung, Novel low-complexity partial transmit sequences scheme for PAPR reduction in OFDM systems using adaptive differential evolution algorithm. Wirel. Pers. Commun. (2012). doi:10.1007/s11277-012-0836-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Pachori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachori, K., Mishra, A. PAPR Reduction in MIMO-OFDM by Using Active Partial Sequence. Circuits Syst Signal Process 34, 3999–4010 (2015). https://doi.org/10.1007/s00034-015-0039-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0039-z

Keywords

Navigation