Skip to main content
Log in

On the Stability Analysis of Systems of Neutral Delay Differential Equations

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper focuses on the stability analysis of systems modeled as neutral delay differential equations (NDDEs). These systems include delays in both the state variables and their time derivatives. The proposed approach consists of a descriptor model transformation that constructs an equivalent set of delay differential algebraic equations (DDAEs) of the original NDDEs. We first rigorously prove the equivalency between the original set of NDDEs and the transformed set of DDAEs. Then, the effect on stability analysis is evaluated numerically through a delay-independent stability criterion and the Chebyshev discretization of the characteristic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.G.A. Bellen, A. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1, 212 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Breda, Solution operator approximations for characteristic roots of delay differential equations. Appl. Numer. Math. 56, 305 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Breda, S. Maset, R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions. Appl. Numer. Math. 56, 318 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.H. Chen, W.X. Zheng, Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica 43, 95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. De la Sen, About robust stability of dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2008, 1687 (2008). https://doi.org/10.1155/2008/480187

    MathSciNet  Google Scholar 

  6. M. De la Sen, A. Ibeas, Stability results for switched linear systems with constant discrete delays. Math. Probl. Eng. 2008, 28 (2008). Article ID 543145

    MathSciNet  MATH  Google Scholar 

  7. E. Fridman, New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. J. Syst. Control Lett. 43, 309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Fu, S.I. Niculescu, J. Chen, Stability of linear neutral time-delay systems: exact conditions via matrix pencil solutions. IEEE Trans. Autom. Control 51(6), 1063 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Gopalsamy, B. Zhang, On a neutral delay-logistic equation. Dyn. Stab. Syst. 2, 183 (1987)

    MathSciNet  MATH  Google Scholar 

  10. K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Science Business Media, New York, 2003)

    Book  MATH  Google Scholar 

  11. Q.L. Han, L. Yu, Robust stability of linear systems with nonlinear parameter perturbations. IEEE Proc. Control Theory Appl. 151, 539 (2004)

    Article  Google Scholar 

  12. F. Hui, L. Jibin, On the existence of periodic solutions of a neutral delay model of single-species population growth. Math. Anal. Appl. 259, 8 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Ivanescu, S.I. Niculescu, L. Dugar, J.M. Dion, E.I. Verriest, On delay-dependent stability for linear neutral systems. Automatica 39, 255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Jarlebring, K. Meerbergen, W. Michiels, A Krylov method for the delay eigenvalue problem. SIAM J. Sci. Comput. 32(6), 3278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.R. Karimi, Robust delay-dependent \(h_{infty}\) control of uncertain time-delay systems with mixed neutral discrete and distributed time-delays and Markovian switching parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1910 (2011)

    Article  MathSciNet  Google Scholar 

  16. V.B. Kolmanovskii, V.R. Nosov, Stability and Periodic Modes of Control Systems with Aftereffect (Moscow, Russia, 1981)

  17. P. Kundur, N. Balu, Power System Stability and Control. EPRI Power System Engineering Series (McGraw-Hill, New York, 1994)

    Google Scholar 

  18. X.G. Li, X.J. Zhu, Stability analysis of neutral systems with distributed delays. Automatica 44, 2197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Liu, Q. Zheng, Stability Analysis of Neutral Systems with Distributed Delays in 7th International Conference on Advanced Intelligent Computing (Zhengzhou, China, 2011)

  20. M. Liu, I. Dassios, F. Milano, Small-Signal Stability Analysis of Neutral Delay Differential Equation in 43th Annual Conference of the IEEE Industrial Electronics Society (IECON 2017) (Beijing, China, 2017)

  21. M.S. Mahmoud, A. Ismail, Delay-dependent robust stability and stabilization of neutral systems. Appl. Math. Sci. 1(10), 471 (2007)

    MathSciNet  MATH  Google Scholar 

  22. W. Michiels, S. Niculescu, Stability and Stabilization of Time-Delay Systems (SIAM, Philadelphia, 2007)

    Book  MATH  Google Scholar 

  23. F. Milano, A Python-Based Software Tool for Power System Analysis, in Proceedings of the IEEE PES General Meeting (Vancouver, BC, 2013)

  24. F. Milano, Small-signal stability analysis of large power systems with inclusion of multiple delays. IEEE Trans. Power Syst. 31(4), 3257 (2016)

    Article  Google Scholar 

  25. F. Milano, I. Dassios, Small-signal stability analysis for non-index 1 hessenberg form systems of delay differential-algebraic equations. IEEE Trans. Circuits Syst. I Regul. Pap. 63(9), 1521 (2016). https://doi.org/10.1109/TCSI.2016.2570944

    Article  MathSciNet  Google Scholar 

  26. F. Milano, M. Anghel, Impact of time delays on power system stability. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 889 (2012)

    Article  MathSciNet  Google Scholar 

  27. B.M. Pao, C. Liu, G. Yin, Topics in Stochastic Analysis and Nonparametric Estimation (Science Business Media, New York, 2008)

    Google Scholar 

  28. S. Stojanovic, Robust finite-time stability of discrete time systems with interval time-varying delay and nonlinear perturbations. J. Frankl. Inst. 354, 4549 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Süli, D.F. Mayers, An Introduction to Numerical Analysis (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  30. D. Yue, Q.L. Han, A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model. IEEE Trans. Circuits Syst. II Express Br. 51, 685 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This material is supported by the Science Foundation Ireland, by funding Muyang Liu, Ioannis Dassios and Federico Milano, under Investigator Programme Grant No. SFI/15/IA/3074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Dassios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Dassios, I. & Milano, F. On the Stability Analysis of Systems of Neutral Delay Differential Equations. Circuits Syst Signal Process 38, 1639–1653 (2019). https://doi.org/10.1007/s00034-018-0943-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0943-0

Keywords

Navigation