Skip to main content
Log in

A Machine Learning-Based Method to Identify Bipolar Disorder Patients

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Bipolar disorder is a serious psychiatric disorder characterized by periodic episodes of manic and depressive symptomatology. Due to the high percentage of people suffering from severe bipolar and depressive disorders, the modelling, characterisation, classification and diagnostic analysis of these mental disorders are of vital importance in medical research. Electroencephalogram (EEG) records offer important information to enhance clinical diagnosis and are widely used in hospitals. For this reason, EEG records and patient data from the Virgen de la Luz Hospital were used in this work. In this paper, an extreme gradient boosting (XGB) machine learning (ML) method involving an EEG signal is proposed. Four supervised ML algorithms including a k-nearest neighbours (KNN), decision tree (DT), Gaussian Naïve Bayes (GNB) and support vector machine (SVM) were compared with the proposed XGB method. The performance of these methods was tested implementing a standard 10-fold cross-validation process. The results indicate that the XGB has the best prediction accuracy (94%), high precision (\(>0.94\)) and high recall (\(>0.94\)). The KNN, SVM, and DT approaches also present moderate prediction accuracy (\(>87\)), moderate recall (\(>0.87\)) and moderate precision (\(>0.87\)). The GNB algorithm shows relatively low classification performance. Based on these results for classification performance and prediction accuracy, the XGB is a solid candidate for a correct classification of patients with bipolar disorder. These findings suggest that XGB system trained with clinical data may serve as a new tool to assist in the diagnosis of patients with bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analysed during the present study are not publicly available because the patients have not given permission for these data to be openly published. They have only given permission for publication of the results, but they are available from the corresponding author upon reasonable request.

References

  1. A. Accardo, M. Affinito, M. Carrozzi, F. Bouquet, Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77(5), 339–350 (1997)

    Article  MATH  Google Scholar 

  2. R. Acharya, O. Faust, N. Kannathal, T. Chua, S. Laxminarayan, Non-linear analysis of EEG signals at various sleep stages. Comput. Methods Programs Biomed. 80(1), 37–45 (2005)

    Article  Google Scholar 

  3. F. Alimardani, J. Cho, R. Boostani, H. Hwang, Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access 6, 40379–40388 (2018)

    Article  Google Scholar 

  4. A. Alkan, M.K. Kiymik, Comparison of AR and welch methods in epileptic seizure detection. J. Med. Syst. 30(6), 413–419 (2006)

    Article  Google Scholar 

  5. J. Angst, The emerging epidemiology of hypomania and bipolar II disorder. J. Affect. Disord. 50(2), 143–151 (1998)

    Article  Google Scholar 

  6. J. Arribas, V. Calhoun, T. Adali, Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fmri data. IEEE Trans. Bio-Med. Eng. 57(12), 2850–2860 (2010)

    Article  Google Scholar 

  7. G. Belizario, R. Junior, R. Salvini, B. Lafer, R. Dias, Predominant polarity classification and associated clinical variables in bipolar disorder: A machine learning approach. J. Affect. Disord. 245, 279–282 (2019)

    Article  Google Scholar 

  8. H. Birnbaum, L. Shi, E. Dial, E. Oster, P. Greenberg, D. Mallett, Economic consequences of not recognizing bipolar disorder patients: A cross-sectional descriptive analysis. J. Clin. Psychiatry 64(10), 1201–1209 (2003)

    Article  Google Scholar 

  9. W. Chang, Y. Liu, X. Wu, Y. Xiao, S. Zhou, W. Cao, A new hybrid XGBSVM model: Application for hypertensive heart disease. IEEE Access 7, 175248–175258 (2019)

    Article  Google Scholar 

  10. T. Chen, C. Guestrin. XGBoost: A scalable tree boosting system, in Proceedings of the 22nd acm SIGKDD international conference on knowledge discovery and data mining, pages 785–794, (2016)

  11. W. Chen, K. Fu, J. Zuo, X. Zheng, T. Huang, W. Ren, Radar emitter classification for large data set based on weighted-xgboost. IET Radar, Sonar Navigation 11(8), 1203–1207 (2017)

    Article  Google Scholar 

  12. B.K. Das, H.S. Dutta, GFNB: Gini index-based fuzzy naive bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Med. Biol. Eng. Comput. 58(11), 2789–2803 (2020)

    Article  Google Scholar 

  13. M.S. Esfahani, E.R. Dougherty, Incorporation of biological pathway knowledge in the construction of priors for optimal bayesian classification. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(1), 202–218 (2014)

    Article  Google Scholar 

  14. R. Esteller, G. Vachtsevanos, J. Echauz, B. Litt, A comparison of waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I Fundamen. Theory Appl. 48(2), 177–183 (2001)

    Article  Google Scholar 

  15. T. Fawcett, An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  16. A.S.P. Geethanjali, DWT based detection of epileptic seizure from EEG signals using Naive Bayes and k-NN classifiers. IEEE Access 4, 7716–7727 (2016)

    Article  Google Scholar 

  17. F. Hajipour, M.J. Jozani, Z. Moussavi, A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea. Med. Biol. Eng. Comput. 58(10), 2517–2529 (2020)

    Article  Google Scholar 

  18. J. Han, J. Pei, M. Kamber. Data mining: concepts and techniques. Third Edition. (2016)

  19. P. He, B. Fan, X. Xu, J. Ding, Y. Liang, Y. Lou, Z. Zhang, X. Chang, Group K-SVD for the classification of gene expression data. Comput. Electr. Eng. 76, 143–153 (2019)

    Article  Google Scholar 

  20. B. Hosseinifard, M.H. Moradi, R. Rostami, Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Programs Biomed. 109(3), 339–345 (2013)

    Article  Google Scholar 

  21. M. Jospin, P. Caminal, E.W. Jensen, H. Litvan, M. Vallverdú, M.M. Struys, H.E. Vereecke, D.T. Kaplan, Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans. Biomed. Eng. 54(5), 840–846 (2007)

    Article  Google Scholar 

  22. M. Kafai, K. Eshghi, Croification: accurate kernel classification with the efficiency of sparse linear SVM. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 34–48 (2017)

    Article  Google Scholar 

  23. N.S. Kumar, J. Mahil, A. Shiji, K.P. Joshua, Detection of autism in children by the EEG behavior using hybrid bat algorithm-based ANFIS classifier. Circuits Syst. Signal Process. 39(2), 674–697 (2020)

    Article  Google Scholar 

  24. T.S. Kumar, D. Kumutha, Comparative analysis of the fuzzy c-means and neuro-fuzzy systems for detecting retinal disease. Circuits Syst. Signal Process. 39(2), 698–720 (2020)

    Article  Google Scholar 

  25. G.J. Lal, E. Gopalakrishnan, D. Govind, Glottal activity detection from the speech signal using multifractal analysis. Circuits Syst. Signal Process. 39(4), 2118–2150 (2020)

    Article  Google Scholar 

  26. D. Li, H. Zhang, M. Zhang, Wavelet de-noising and genetic algorithm-based least squares twin SVM for classification of arrhythmias. Circuits Syst. Signal Process. 36(7), 2828–2846 (2017)

    Article  Google Scholar 

  27. Y. Luo, B. Wang, Prediction of negative conversion days of childhood nephrotic syndrome based on PCA and BP-adaboost neural network. IEEE Access 7, 151579–151586 (2019)

    Article  Google Scholar 

  28. B. Ma, F. Meng, G. Yan, H. Yan, B. Chai, F. Song, Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput. Biol. Med. 121, 103761 (2020)

    Article  Google Scholar 

  29. J. Mateo-Sotos, A. Torres, E.V. Sánchez-Morla, J. Santos, An adaptive radial basis function neural network filter for noise reduction in biomedical recordings. Circuits Syst. Signal Process. 35(12), 4463–4485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Matza, K. Rajagopalan, C. Thompson, G. de Lissovoy, Misdiagnosed patients with bipolar disorder: Comorbidities, treatment patterns, and direct treatment costs. J. Clin. Psychiatry 66(11), 1432–1440 (2005)

    Article  Google Scholar 

  31. J.S. McCombs, J. Ahn, T. Tencer, L. Shi, The impact of unrecognized bipolar disorders among patients treated for depression with antidepressants in the fee-for-services california medicaid (medi-cal) program: A 6-year retrospective analysis. J. Affect. Disord. 97(1), 171–179 (2007)

    Article  Google Scholar 

  32. N.M.M. Nascimento, L.B. Marinho, S.A. Peixoto, J.P. do ValeMadeiro, V.H.C. de Albuquerque, Heart arrhythmia classification based on statistical moments and structural co-occurrence. Circuits Syst. Signal Process. 39(3), 631–650 (2020)

    Article  Google Scholar 

  33. T. Nguyen-Ky, P. Wen, Y. Li, Monitoring the depth of anaesthesia using hurst exponent and bayesian methods. IET Signal Process. 8(9), 907–917 (2014)

    Article  Google Scholar 

  34. A. Ogunleye, Q.G. Wang, XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinf. 17(6), 2131–2140 (2019)

    Article  Google Scholar 

  35. F. Perrin, J. Pernier, O. Bertrand, J. Echallier, Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72(2), 184–187 (1989)

    Article  Google Scholar 

  36. S.M. Pincus, W.-M. Huang, Approximate entropy: statistical properties and applications. Commun. Stat. Theory Methods 21(11), 3061–3077 (1992)

    Article  MATH  Google Scholar 

  37. Z. Que, Z. Xu, A data-driven health prognostics approach for steam turbines based on XGBoost and DTW. IEEE Access 7, 93131–93138 (2019)

    Article  Google Scholar 

  38. A. Rehman, S. Naz, M.I. Razzak, F. Akram, M. Imran, A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits Syst. Signal Process. 39(2), 757–775 (2020)

    Article  Google Scholar 

  39. J.S. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Article  Google Scholar 

  40. Z. Rihmer, K. Kiss, Bipolar disorders and suicide risk. Clin. Appr. Bipol. Disord. 1, 1–21 (2002)

    Google Scholar 

  41. R. Rivera-Lopez, J. Canul-Reich, Construction of near-optimal axis-parallel decision trees using a differential-evolution-based approach. IEEE Access 6, 5548–5563 (2018)

    Article  Google Scholar 

  42. N. Sairamya, S.T. George, D.N. Ponraj, M. Subathra, Detection of epileptic EEG signal using improved local pattern transformation methods. Circuits Syst. Signal Process. 37(12), 5554–5575 (2018)

    Article  Google Scholar 

  43. J.A.M. Saucedo, J.D. Hemanth, U. Kose, Prediction of electroencephalogram time series with electro-search optimization algorithm trained adaptive neuro-fuzzy inference system. IEEE Access 7, 15832–15844 (2019)

    Article  Google Scholar 

  44. H. Shi, H. Wang, Y. Huang, L. Zhao, C. Qin, C. Liu, A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Comput. Methods Programs Biomed. 171, 1–10 (2019)

    Article  Google Scholar 

  45. P. Sodmann, M. Vollmer, N. Nath, L. Kaderali, A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms. Physiol. Meas. 39(10), 104005 (2018)

    Article  Google Scholar 

  46. L. Sörnmo, P. Laguna, Bioelectrical signal processing in cardiac an neurological applications (Elsevier Academic Press, Amsterdam, 2005)

    Google Scholar 

  47. L. Torlay, M. Perrone Bertolotti, E. Thomas, M. Baciu, Machine learning XGBoost analysis of language networks to classify patients with epilepsy. Brain Inf. 4(3), 159–169 (2017)

    Article  Google Scholar 

  48. A. Torres, J. Mateo, M.A. García, J. Santos, Cancellation of powerline interference from biomedical signals using an improved affine projection algorithm. Circuits Syst. Signal Process. 34(4), 1249–1264 (2015)

    Article  MathSciNet  Google Scholar 

  49. H.C. Tunc, C.O. Sakar, H. Apaydin, G. Serbes, A. Gunduz, M. Tutuncu, F. Gurgen, Estimation of parkinson’s disease severity using speech features and extreme gradient boosting. Med. Biol. Eng. Comput. 58(11), 2757–2773 (2020)

    Article  Google Scholar 

  50. Y. Wang, S. Xia, Q. Tang, J. Wu, X. Zhu, A novel consistent random forest framework: Bernoulli random forests. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3510–3523 (2018)

    Article  MathSciNet  Google Scholar 

  51. A. Wierdsma, S. Sytema, J. van Os, C. Mulder, Case registers in psychiatry: do they still have a role for research and service monitoring? Curr. Opin. Psychiatry 21(4), 379–384 (2008)

    Article  Google Scholar 

  52. F. Xiao, Y. Wang, L. He, H. Wang, W. Li, Z. Liu, Motion estimation from surface electromyogram using adaboost regression and average feature values. IEEE Access 7, 13121–13134 (2019)

    Article  Google Scholar 

  53. W. Xing, Y. Bei, Medical health big data classification based on KNN classification algorithm. IEEE Access 8, 28808–28819 (2019)

    Article  Google Scholar 

  54. C. Ye, T. Fu, S. Hao, Y. Zhang, O. Wang, B. Jin, M. Xia, M. Liu, X. Zhou, Q. Wu et al., Prediction of incident hypertension within the next year: prospective study using statewide electronic health records and machine learning. J. Med. Internet Res. 20(1), e22 (2018)

    Article  Google Scholar 

  55. J.M. Yentes, N. Hunt, K.K. Schmid, J.P. Kaipust, D. McGrath, N. Stergiou, The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41(2), 349–365 (2013)

    Article  Google Scholar 

  56. B. Yu, W. Qiu, C. Chen, A. Ma, J. Jiang, H. Zhou, Q. Ma, Submito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and extreme gradient boosting. Bioinformatics 36(4), 1074–1081 (2020)

    Article  Google Scholar 

  57. S. Yu, X. Li, X. Zhang, H. Wang, The OCS-SVM: An objective-cost-sensitive SVM with sample-based misclassification cost invariance. IEEE Access 7, 118931–118942 (2019)

    Article  Google Scholar 

  58. C. Yücelbaş, Ş Yücelbaş, S. Özşen, G. Tezel, S. Küççüktürk, Ş Yosunkaya, A novel system for automatic detection of k-complexes in sleep EEG. Neural Comput. Appl. 29(8), 137–157 (2018)

    Article  Google Scholar 

  59. S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient KNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. syst. 29(5), 1774–1785 (2017)

    Article  MathSciNet  Google Scholar 

  60. Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, A. Cichocki, Sparse bayesian classification of EEG for brain-computer interface. IEEE Trans. Neural Netw. Learn. syst. 27(11), 2256–2267 (2016)

    Article  MathSciNet  Google Scholar 

  61. J. Zhong, Y. Sun, W. Peng, M. Xie, J. Yang, X. Tang, XGBFEMF: an XGBoost-based framework for essential protein prediction. IEEE Trans. NanoBiosci. 17(3), 243–250 (2018)

    Article  Google Scholar 

  62. W. Zhou, Y. Liu, Q. Yuan, X. Li, Epileptic seizure detection using lacunarity and bayesian linear discriminant analysis in intracranial EEG. IEEE Trans. Biomed. Eng. 60(12), 3375–3381 (2013)

    Article  Google Scholar 

  63. X. Zhou, N.A. Obuchowski, D.K. McClish, Statistical methods in diagnostic medicine, 2nd edn. (Wiley, New York, 2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Virgen de la Luz Hospital of Cuenca (Spain) and Institute of Technology (University of Castilla-La Mancha).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated in the development of the article.

Corresponding author

Correspondence to J. Mateo-Sotos.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability

The code generated and/or analysed during the present study are not publicly available because the patients have not given permission for these code to be openly published. They have only given permission for publication of the results, but they are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateo-Sotos, J., Torres, A.M., Santos, J.L. et al. A Machine Learning-Based Method to Identify Bipolar Disorder Patients. Circuits Syst Signal Process 41, 2244–2265 (2022). https://doi.org/10.1007/s00034-021-01889-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01889-1

Keywords

Navigation