Skip to main content
Log in

Discrete Fourier Analysis on Fundamental Domain and Simplex of A d Lattice in d-Variables

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A discrete Fourier analysis on the fundamental domain Ω d of the d-dimensional lattice of type A d is studied, where Ω2 is the regular hexagon and Ω3 is the rhombic dodecahedron, and analogous results on d-dimensional simplex are derived by considering invariant and anti-invariant elements. Our main results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the simplex is shown to satisfy an explicit compact formula and the Lebesgue constant of the interpolation is shown to be in the order of (log n)d. The basic trigonometric functions on the simplex can be identified with Chebyshev polynomials in several variables already appeared in literature. We study common zeros of these polynomials and show that they are nodes for a family of Gaussian cubature formulas, which provides only the second known example of such formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacry, H.: Generalized Chebyshev polynomials and characters of GL(N,C) and SL(N,C). In: Group Theoretical Methods in Physics. Lecture Notes in Phys., vol. 201, pp. 483–485. Springer, Berlin (1984)

    Chapter  Google Scholar 

  2. Bacry, H.: Zeros of polynomials and generalized Chebyshev polynomials. In: Group Theoretical Methods in Physics, Yurmala, 1985, vol. I, pp. 481–494. VNU Sci. Press, Utrecht (1986)

    Google Scholar 

  3. Beerends, R.J.: Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator. Trans. Am. Math. Soc. 328, 779–814 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beerends, R.J., Opdam, E.M.: Certain hypergeometric series related to the root system BC. Trans. Am. Math. Soc. 339, 581–609 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berens, H., Schmid, H., Xu, Y.: Multivariate Gaussian cubature formula. Arch. Math. 64, 26–32 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)

    MATH  Google Scholar 

  7. Debiard, A.: Polynomes de Tchebychev et de Jacobi duns un espace euclidien de dimension p. C. R. Acad. Sci. Paris 296, 529–532 (1983)

    MATH  MathSciNet  Google Scholar 

  8. Dudgeon, D.E., Mersereau, R.M.: Multidimensional Digital Signal Processing. Prentice-Hall Inc., Englewood Cliffs (1984)

    MATH  Google Scholar 

  9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, vol. 81. Cambridge Univ. Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Dunn, K.B., Lidl, R.: Multi-dimensional generalizations of the Chebyshev polynomials. Proc. Jpn. Acad. 56, 154–165 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dunn, K.B., Lidl, R.: Generalizations of the classical Chebyshev polynomials to polynomials in two variables. Czechoslov. Math. J. 32, 516–528 (1982)

    MathSciNet  Google Scholar 

  12. Eier, R., Lidl, R.: A class of orthogonal polynomials in k variables. Math. Ann. 260, 93–99 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis, Foundations. Oxford Science Publications, New York (1996)

    MATH  Google Scholar 

  15. Klimyk, A.U., Patera, J.: (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms. J. Phys. A 40, 10473–10489 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klimyk, A.U., Patera, J.: (Anti)symmetric multivariate trigonometric functions and corresponding Fourier transforms. J. Math. Phys. 48(9), 093504 (2007)

    Article  MathSciNet  Google Scholar 

  17. Koornwinder, T.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, I–IV. Nederl. Acad. Wetensch. Proc. Ser. A77 = Indag. Math. 36, 48–66 and 357–381 (1974)

  18. Li, H., Xu, Y.: Discrete Fourier analysis on a dodecahedron and a tetrahedron. Math. Comput. 78, 999–1029 (2009)

    Google Scholar 

  19. Li, H., Sun, J., Xu, Y.: Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle. SIAM J. Numer. Anal. 46, 1653–1681 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lidl, R.: Tschebyscheff polynome in mehreren variabelen. J. Reine Angew. Math. 273, 178–198 (1975)

    MATH  MathSciNet  Google Scholar 

  21. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Univ. Press Inc., New York (1995)

    MATH  Google Scholar 

  22. Marks, R.J. II: Introduction to Shannon Sampling and Interpolation Theory. Springer, New York (1991)

    MATH  Google Scholar 

  23. Mysoviskikh, I.P.: Interpolatory Cubature Formulas. Nauka, Moscow (1981)

    Google Scholar 

  24. Podkorytov, A.N.: Order of growth of Lebesgue constants of Fourier sums over polyhedra, Vestnik Leningrad. Univ. Mat. Mekh. Astron. 1982, 110–111, 127 (Russian. English summary)

  25. Ricci, P.E.: Chebyshev polynomials in several variables. Rend. Mat. 11, 295–327 (1978) (Italian)

    MATH  MathSciNet  Google Scholar 

  26. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  27. Sun, J.: Multivariate Fourier series over a class of non tensor-product partition domains. J. Comput. Math. 21, 53–62 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Sun, J.: Multivariate Fourier transform methods over simplex and super-simplex domains. J. Comput. Math. 24, 305–322 (2006)

    MATH  MathSciNet  Google Scholar 

  29. Sun, J.: A new class of three-variable orthogonal polynomials and their recurrences relations. Sci. China, Ser. A 51, 1071–1092 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sun, X.: Approximation on the Voronoi cells of the A d lattice. Manuscript (2008)

  31. Yudin, V.A.: Lower bound of the Lebesgue constants. Math. Notes 25(1–2), 63–65 (1979) (Russian)

    MATH  MathSciNet  Google Scholar 

  32. Xu, Y.: On orthogonal polynomials in several variables. In: Special Functions, q-series and Related Topics. The Fields Institute for Research in Mathematical Sciences, Communications Series, vol. 14, pp. 247–270 (1997)

  33. Xu, Y.: Polynomial interpolation in several variables, cubature formulae, and ideals. Adv. Comput. Math. 12, 363–376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zygmund, A.: Trigonometric Series. Cambridge Univ. Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu.

Additional information

Communicated by Michael Frazier.

The first author was supported by NSFC Grants 10601056 and 10971212. The second author was supported by NSF Grant DMS-0604056.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Xu, Y. Discrete Fourier Analysis on Fundamental Domain and Simplex of A d Lattice in d-Variables. J Fourier Anal Appl 16, 383–433 (2010). https://doi.org/10.1007/s00041-009-9106-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-009-9106-9

Keywords

Mathematics Subject Classification (2000)

Navigation