Skip to main content
Log in

Adelic Multiresolution Analysis, Construction of Wavelet Bases and Pseudo-Differential Operators

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In our previous paper, the Haar multiresolution analysis (MRA) \(\{V_{j}\}_{j\in \mathbb {Z}}\) in \(L^{2}(\mathbb {A})\) was constructed, where \(\mathbb {A}\) is the adele ring. Since \(L^{2}(\mathbb {A})\) is the infinite tensor product of the spaces \(L^{2}({\mathbb {Q}}_{p})\), p=∞,2,3,…, the adelic MRA has some specific properties different from the corresponding finite-dimensional ones. Nevertheless, this infinite-dimensional MRA inherits almost all basic properties of the finite-dimensional case. In this paper we derive explicit formulas for bases in V j , \(j\in \mathbb {Z}\), and for the wavelet bases generated by the above-mentioned adelic MRA. In view of the specific properties of the adelic MRA, there arise some technical problems in the construction of wavelet bases. These problems were solved with the aid of the operator formalization of the process of generation of wavelet bases. We study the spectral properties of the fractional operator introduced by S. Torba and W.A. Zúñiga-Galindo. We prove that the constructed wavelet functions are eigenfunctions of this fractional operator. This paper, as well as our previous paper, introduces new ideas to construct different infinite-dimensional MRAs. Our results can be used in the theory of adelic pseudo-differential operators and equations over the ring of adeles and in adelic models in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In particular, we get to know about the practically forgotten paper of S. Dahlke [8] who (already in 1994) constructed MRA on arbitrary locally compact Abelian groups. We remark that, however, our p-adic and adelic MRA are not covered by Dahlke’s MRA, since he used a subgroup as a set of wavelet generating shifts. The latter is not the case in our approach.

References

  1. Albeverio, S., Khrennikov, A.Y., Shelkovich, V.M.: Theory of P-Adic Distributions: Linear and Nonolinear Models. London Math. Soc. Lecture Note Ser., vol. 370. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Albeverio, S., Khrennikov, A.Y., Shelkovich, V.M.: The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory. J. Math. Anal. Appl. 375, 82–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Evdokimov, S., Skopina, M.: p-Adic multiresolution analysis and wavelet frames. J. Fourier Anal. Appl. 16(5), 693–714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aref’eva, I.Y., Dragovic, B.G., Volovich, I.V.: On the adelic string amplitudes. Phys. Lett. B 209(4), 445–450 (1998)

    Article  MathSciNet  Google Scholar 

  5. Berezanskii, Y.M.: Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables. Math. Monographs, vol. 63. AMS, Providence (1986). Translated from the Russian by H.H. McFaden. Translation edited by Ben Silver.

    Google Scholar 

  6. Brekke, L., Freund, P.G.O.: p-Adic numbers in physics. Phys. Rep. 233, 1 (1993)

    Article  MathSciNet  Google Scholar 

  7. Conrad, K.: The classical and adelic point of view in number theory (2010). www.mccme.ru/ium/postscript/f10/conrad-lecturenotes.pdf

  8. Dahlke, S.: Multiresolution analysis and wavelets on locally compact Abelian groups. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Wavelets, Images, and Surface Fittings, pp. 141–156. Peters, Wellesley (1994)

    Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSR Series in Appl. Math. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  10. Dragovich, B.: On Generalized functions in adelic quantum mechanics. Integral Transforms Spec. Funct. 6, 197–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dragovich, B., Radyno, Y.V., Khrennikov, A.: Distributions on adeles. J. Math. Sci. 142(3), 2105–2112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. Preprint (1983)

  13. Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: Proc. Internat. Conf. on Wavelets and Applications, pp. 1–56. New Delhi Allied, Chennai (2003)

    Google Scholar 

  14. Gel’fand, I.M., Graev, M.I., Piatetskii-Shapiro, I.I.: Generalized Functions. Representation Theory and Automorphic Functions, vol. 6. Nauka, Moscow (1966). Translated from the Russian by K.A. Hirsch, Published in 1990, Academic Press, Boston

    MATH  Google Scholar 

  15. Goldfeld, D., Hundley, J.: Automorphic Representations and L-Functions for the General Linear Group, vol. I. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  16. Kaneko, H., Kochubei, A.N.: Weak solutions of stochastic differential equations over the field of p-adic numbers. Tohoku Math. J. (2) 59(4), 547–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khrennikov, A.: p-Adic Valued Distributions Mathematical Physics. Kluwer Academic, Dordrecht (1994)

    Book  MATH  Google Scholar 

  18. Khrennikov, A.Y., Kosyak, A.V., Shelkovich, V.M.: Wavelet analysis on adeles and pseudo-differential operators. J. Fourier Anal. Appl. 18(6), 1215–1264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khrennikov, A., Radyno, Y.V.: On adelic analog of Laplacian. Proc. Jangjeon Math. Soc. 6(1), 1–18 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Khrennikov, A., Rosinger, E.E., van Zyl, A.: Graded tensor products and entanglement. p-Adic Numbers Ultrametric Anal. Appl. 4(1), 20–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khrennikov, A.Y., Shelkovich, V.M.: p-Adic multidimensional wavelets and their application to p-adic pseudo-differential operators. Preprint (2006). http://arxiv.org/abs/math-ph/0612049

  22. Khrennikov, A.Y., Shelkovich, V.M., Skopina, M.: p-Adic orthogonal wavelet bases. p-Adic Numbers Ultrametric Anal. Appl. 1(2), 145–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kochubei, A.N.: Schrödinger-type operator over the p-adic number field. Teor. Mat. Fiz. 86(3), 323–333 (1991). Translation in Theor. Math. Phys. 86(3), 221–228 (1991)

    Article  MathSciNet  Google Scholar 

  24. Kochubei, A.N.: Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. Marcel Dekker, New York (2001)

    Book  MATH  Google Scholar 

  25. Kochubei, A.N.: A non-Archimedean wave equation. Pac. J. Math. 235(2), 245–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozyrev, S.V.: Wavelet analysis as a p-adic spectral analysis. Izv. Ross. Akad. Nauk, Ser. Math. 66(2), 149–158 (2002). English transl. in Izv. Math. 66(2), 367–376 (2002)

    Article  MathSciNet  Google Scholar 

  27. Lizorkin, P.I.: Generalized Liouville differentiation and the functional spaces L p r(E n ). Imbedding theorems. Mat. Sb. (N. S.) 60(102), 325–353 (1963) (Russian)

    MathSciNet  Google Scholar 

  28. Lizorkin, P.I.: Operators connected with fractional differentiation, and classes of differentiable functions. In: Studies in the Theory of Differentiable Functions of Several Variables and Its Applications, IV. Trudy Mat. Inst. Steklov., vol. 117, pp. 212–243 (1972) (Russian)

    Google Scholar 

  29. Manin, Y.I.: Reflections on artithmetical physics. In: Conformal Invariance and String Theory, pp. 293–303. Academic Press, New York (1989)

    Google Scholar 

  30. Neretin, Y.A.: On adelic model of boson Fock space. In: Moscow Seminar on Mathematical Physics. II. Amer. Math. Soc. Transl. Ser. 2, vol. 221, pp. 193–202. Amer. Math. Soc., Providence (2007)

    Google Scholar 

  31. von Neumann, J.: On infinite direct products. Compos. Math. 15(1), 1–77 (1939)

    Google Scholar 

  32. Radyno, Y.V., Radyna, Y.M.: Generalized functions on adeles. Linear and non-linear theories. In: Linear and Non-linear Theory of Generalized Functions and Its Applications. Banach Center Publ., vol. 88, pp. 243–250. Polish Acad. Sci. Inst. Math, Warsaw (2010)

    Chapter  Google Scholar 

  33. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis vol. 1. Academic Press, New York (1973)

    Google Scholar 

  34. Rodríguez-Vega, J.J., Zúñiga-Galindo, W.A.: Taibleson operators, p-adic parabolic equations and ultrametric diffusion. Pac. J. Math. 237(2), 327–347 (2008)

    Article  MATH  Google Scholar 

  35. Rosinger, E.E., Khrennikov, A.: Beyond archimedean space-time structure. In: Jaeger, G., Khrennikov, A., Schlosshauer, M., Weihs, G. (eds.) Advances in Quantum Theory, vol. 1327, pp. 520–526. American Institute of Physics (2011)

    Google Scholar 

  36. Samko, S.G.: Hypersingular Integrals and Their Applications. Taylor & Francis, New York (2002)

    MATH  Google Scholar 

  37. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives and Some of Their Applications. Nauka i Tekhnika, Minsk (1987) (in Russian)

    MATH  Google Scholar 

  38. Shelkovich, V.M., Skopina, M.: p-Adic Haar multiresolution analysis and pseudo-differential operators. J. Fourier Anal. Appl. 15(3), 366–393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Taibleson, M.H.: Fourier Analysis on Local Fields. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  40. Torba, S., Zúñiga-Galindo, W.A.: Parabolic equations and Markov stochastic processes on adeles (2012). arXiv:1206.5213v1 [math-ph]

  41. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, River Edge (1994)

    Book  Google Scholar 

  42. Zúñiga-Galindo, W.A.: Fundamental solutions of pseudo-differential operators over p-adic fields. Rend. Semin. Mat. Univ. Padova 109, 241–245 (2003)

    MATH  Google Scholar 

  43. Zúñiga-Galindo, W.A.: Parabolic equations and Markov processes over p-adic fields. Potential Anal. 28(2), 185–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors were supported by the joint grant of Swedish Research Council and South-African Research Council, Sida project “Non-Archimedean analysis: from fundamentals to applications”.

We are greatly indebted to Sergii M. Torba for fruitful discussions and extremely grateful to A.V. Kosyak, with whom we intensively discussed many questions and technical problems arisen when working on this paper.

Partially the results of this paper were presented in the talk of one of the coauthors (A. Khrennikov) at the seminar of the Numerical Harmonic Analysis Group of University of Vienna; the speaker is thankful to all participants of the seminar for fruitful discussions and for “knowledge transfer” on harmonic analysis on locally compact groups (especially zero dimensional) and history of its development.Footnote 1 The visit to Vienna was based on the visiting professor fellowship at the quantum foundation group of prof. A. Zeilinger, Austrian Academy of Science, and the grant “Non-Archimedean analysis: from fundamentals to applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Khrennikov.

Additional information

Communicated by Hans G. Feichtinger.

This paper was completed a few days before sudden death of Vladimir Shelkovich in February 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A.Y., Shelkovich, V.M. & van der Walt, J.H. Adelic Multiresolution Analysis, Construction of Wavelet Bases and Pseudo-Differential Operators. J Fourier Anal Appl 19, 1323–1358 (2013). https://doi.org/10.1007/s00041-013-9304-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9304-3

Keywords

Mathematics Subject Classification

Navigation