Skip to main content
Log in

Gaussian Cubature Arising from Hybrid Characters of Simple Lie Groups

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Lie groups with two different root lengths allow two ‘mixed sign’ homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading to the Gaussian cubature formulas for families of polynomials arising from the characters of irreducible representations of any simple Lie group, to new cubature formulas based on the corresponding hybrid characters. These formulas are new forms of Gaussian cubature in the short root length case and new forms of Radau cubature in the long root case. The nodes for the cubature arise quite naturally from the (computationally efficient) elements of finite order of the Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bourbaki, N.: Groupes et Algèbres de Lie, Ch. 4,5,6, Èlèments de Mathèmatiques. Hermann, Paris (1968)

  2. Cools, R.: Constructing cubature formulae: the science behind the art. Acta Num. 6, 1–54 (1997)

    Article  MathSciNet  Google Scholar 

  3. Eier, R., Lidl, R.: A class of orthogonal polynomials in k variables. Math. Ann. 260, 99–106 (1982)

    Article  MathSciNet  Google Scholar 

  4. Heckman, G., Schlichtkrull, H.: Harmonic Analysis and Special Functions on Symmetric Spaces. Academic Press Inc., San Diego (1994)

    MATH  Google Scholar 

  5. Hoffman, M.E., Withers, W.D.: Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. AMS 308(1), 91–104 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hrivnák, J., Patera, J.: On discretization of tori of compact simple Lie groups. J. Phys. A 42, 385208 (2009)

    Article  MathSciNet  Google Scholar 

  7. Hrivnák, J., Motlochová, L., Patera, J.: On discretization of tori of compact simple Lie groups II. J. Phys. A 45, 255201 (2012)

    Article  MathSciNet  Google Scholar 

  8. Kass, S., Moody, R.V., Patera, J., Slansky, R.: Affine Lie Algebras,Weight Multiplicities, and Branching Rules, vol. 1. University of California Press, Berkeley (1990)

  9. Klimyk, A.U., Patera, J.: Antisymmetric orbit functions. SIGMA 3, Paper 023, p. 83 (2007)

  10. Klimyk, A.U., Patera, J.: Orbit functions. SIGMA 2, Paper 006, p. 60 (2006)

  11. Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, II. Indag. Math. Proc. 77(1), 48–66 (1974)

    Article  MathSciNet  Google Scholar 

  12. Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, IV. Indag. Math. Proc. 77(4), 357–381 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koornwinder, T.: Two-Variable Analogues of the Classical Orthogonal Polynomials, Theory and Application of Special Functions, Math. Res. Center, Univ. Wisconsin, Publ. No. 35, pp. 435–495. Academic Press, New York (1975)

    Google Scholar 

  14. Li, H., Sun, J., Xu, Y.: Discrete Fourier analysis and Chebyshev polynomials with \(G_2\) group, SIGMA 8. Paper 067, 29 (2012)

  15. Li, H., Xu, Y.: Discrete Fourier analysis on fundamental domain and simplex of \(A_d\) lattice in \(d\)-variables. J. Fourier Anal. Appl. 16, 383–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moody, R.V., Patera, J.: Characters of elements of finite order in simple Lie groups. SIAM J. Algebr. Discret. Methods 5, 359–383 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moody, R.V., Patera, J.: Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Adv. Appl. Math. 47, 509–535 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moody, R.V., Pianzola, A.: \(\lambda \)-mapping between representation rings of Lie algebras. Can. J. Math. 35, 898–960 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Munthe-Kaas, H.Z., Nome, M., Ryland, B.N.: Through the kaleidoscope: symmetries, groups and Chebyshev approximations from a computational point of view. In: Cucker, F., Krick, T., Pinkus, A. (eds.) Foundations of Computational Mathematics, pp. 188–229. Cambridge University Press, Budapest (2012)

    Google Scholar 

  20. Munthe-Kaas, H.Z., Ryland, B.N.: On multivariate Chebyshev polynomials and spectral approximations on triangles. In: Hesthaven, J.S., Rønquist, E.M. (eds.) Spectral and High Order Methods for Partial Differential Equations. Springer, Berlin (2011)

    Google Scholar 

  21. Patera, J., Sharp, R.T., Slansky, R.: On a new relation between semisimple Lie algebras. J. Math. Phys. 21, 2335–2341 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Serre, J.-P.: Algèbres de Lie Semi-simples Complexes. Benjamin, Elmsford (1966). [English trans. Complex Semisimple Lie Algebras. Springer (2001)]

    MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the Natural Sciences and Engineering Research Council of Canada and by the MIND Research Institute of Irvine, Calif. L.M. would also like to express her gratitude to the Centre de recherches mathématiques, Université de Montréal, for the hospitality extended to her during her doctoral studies as well as to the Institute de Sciences Mathématiques de Montréal and Foundation J.A. DeSève for partial support of her studies. We are also grateful to the referees of this paper who provided us with much insight into the historical background and literature in the area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Motlochová.

Additional information

Communicated by Arieh Iserles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moody, R.V., Motlochová, L. & Patera, J. Gaussian Cubature Arising from Hybrid Characters of Simple Lie Groups. J Fourier Anal Appl 20, 1257–1290 (2014). https://doi.org/10.1007/s00041-014-9355-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9355-0

Keywords

Mathematics Subject Classfication

Navigation