Skip to main content
Log in

Shock structure in separated nozzle flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In the case of high overexpansion, the exhaust jet of the supersonic nozzle of rocket engines separates from nozzle wall because of the large adverse pressure gradient. Correspondingly, to match the pressure of the separated flow region, an oblique shock is generated which evolves through the supersonic jet starting approximately at the separation point. This shock reflects on the nozzle axis with a Mach reflection. Thus, a peculiar Mach reflection takes place whose features depend on the upstream flow conditions, which are usually not uniform. The expected features of Mach reflection may become much difficult to predict, depending on the nozzle shape and the position of the separation point along the divergent section of the nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nave, L., Coffey, G.: Sea level side loads in high-area-ratio rocket engines. AIAA Paper 73-1284 (1973)

  2. Onofri, M., Nasuti, F.: The physical origin of side loads in rocket nozzles. AIAA Paper 99-2587 (1999)

  3. Frey M., Hagemann G.: Restricted shock separation in rocket nozzles. J. Propuls. Power 16, 478–484 (2000)

    Article  Google Scholar 

  4. Gross A., Weiland C.: Numerical simulation of separated cold gas nozzle flows. J. Propuls. Power 20, 509–519 (2004)

    Article  Google Scholar 

  5. Gross A., Weiland C.: Numerical simulation of hot gas nozzle flows. J. Propuls. Power 20, 879–891 (2004)

    Article  Google Scholar 

  6. Li H., Ben-Dor G.: Mach reflection wave configuration in two-dimensional supersonic jets of overexpanded nozzles. AIAA J. 36, 488–491 (1998)

    Article  Google Scholar 

  7. Nasuti, F., Onofri, M.: A model to predict the Mach reflection of the separation shock in rocket nozzles. In: Proceedings of the 26th International Symposium on Shock Waves, 15–20 July 2007. Göttingen, Germany (2007)

  8. Rylov A.I.: On the impossibility of regular reflection of a steady-state shock wave from the axis of symmetry. Prikl. Math. Mech. 54, 200–203 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Stark, R.H., Wagner, B.H.: Experimental flow investigation of a truncated ideal contour nozzle. AIAA Paper 2006-5208 (2006)

  10. Reijasse, P., Morzenski, L., Blacodon, D., Birkemeyer, J.: Flow separation experimental analysis in overexpanded subscale rocket–nozzles. AIAA Paper 2001-3556 (2001)

  11. Nasuti, F., Onofri, M., Pietropaoli, E.: The influence of nozzle shape on the shock structure in separated flows. In: Proceedings of the 5th European Symposium on Aerothermodynamics for Space Vehicles, 8–11 November 2004, ESA SP-563, pp. 353–358 (2005)

  12. Ahlberg J.H., Hamilton S., Migdal D., Nilson E.N.: Truncated perfect nozzles in optimum nozzle design. ARS J. 31, 614–620 (1961)

    Article  Google Scholar 

  13. Rao G.V.R.: Exhaust nozzle contour for optimum thrust. Jet Propuls. 28, 377–382 (1958)

    Article  Google Scholar 

  14. Rao G.V.R.: Approximation of optimum thrust nozzle contour. ARS J. 30, 561 (1960)

    Google Scholar 

  15. Hoffman J.D.: Design of compressed truncated perfect nozzles. J. Propuls. Power 3, 150–156 (1987)

    Article  Google Scholar 

  16. Taro Shimizu T., Miyajima H., Kodera M.: Numerical study of restricted shock separation in a compressed truncated perfect nozzle. AIAA J. 44, 576–584 (2006)

    Article  Google Scholar 

  17. Nasuti F., Onofri M.: Viscous and inviscid vortex generation during startup of rocket nozzles. AIAA J. 36, 809–815 (1998)

    Article  Google Scholar 

  18. Hagemann G., Frey M., Koschel W.: Appearance of restricted shock separation in rocket nozzles. J Propuls. Power 18, 577–584 (2002)

    Article  Google Scholar 

  19. Mattsson, J., Högman, U., Torngren, L.: A sub scale test programme on investigation of flow separation and side loads in rocket nozzles. In: Proceedings of the 3rd European Symposium on Aerothermodynamics for Space Vehicles, 24–26 November 1998, ESA SP-426, pp. 373–378 (1998)

  20. Nasuti, F., Onofri, M., Martelli, E.: Numerical analysis of flow separation structures in rocket nozzles. AIAA Paper 2007-5473 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nasuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasuti, F., Onofri, M. Shock structure in separated nozzle flows. Shock Waves 19, 229–237 (2009). https://doi.org/10.1007/s00193-008-0173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0173-7

Keywords

PACS

Navigation