Skip to main content
Log in

Experimental study of the shock–bubble interaction with reshock

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction of a planar shock wave with a spherical density inhomogeneity is studied experimentally under reshock conditions. Reshock occurs when the incident shock wave, which has already accelerated the spherical bubble, reflects off the tube end wall and reaccelerates the inhomogeneity for a second time. These experiments are performed at the Wisconsin Shock Tube Laboratory, in a 9m-long vertical shock tube with a large square cross section (25.4×25.4 cm2). The bubble is prepared on a pneumatically retracted injector and released into a state of free fall. Planar diagnostic methods are used to study the bubble morphology after reshock. Data are presented for experiments involving two Atwood numbers (A = 0.17 and 0.68) and three Mach numbers (1.35 < M < 2.33). For the low Atwood number case, a secondary vortex ring appears immediately after reshock which is not observed for the larger Atwood number. The post-reshock vortex velocity is shown to be proportional to the incident Mach number, M, the initial Atwood number, A, and the incident shock wave speed, W i.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richtmyer R.D.: Taylor instability in shock acceleration of compressible fluids. Phys. D Nonlinear Phenom. 12, 1–3 (1984)

    Google Scholar 

  2. Lindl J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933–4024 (1995)

    Article  Google Scholar 

  3. Klein R.I., Budil K.S., Perry T.S., Bach D.R.: Interaction of supernova remnants with interstellar clouds: from the NOVA laser to the galaxy. Astrophys. J. Suppl. Ser. 127, 379–383 (2000)

    Article  Google Scholar 

  4. Yang J., Kubota T., Zukoski E.E.: A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994)

    Article  MATH  Google Scholar 

  5. Delius M., Ueberle F., Eisenmenger W.: Extracorporeal shock waves act by shock wave-gas bubble interaction. Ultrasound Med. Biol. 24, 1055–1059 (1998)

    Article  Google Scholar 

  6. Taylor G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  7. Ranjan D., Niederhaus J., Motl B., Anderson M., Oakley J., Bonazza R.: Experimental investigation of primary and secondary features in high-mach-number shock–bubble interaction. Phys. Rev. Lett. 98, 024502 (2007)

    Article  Google Scholar 

  8. Ranjan, D.: Experimental investigation of the shock-induced distortion of a spherical gas inhomogeneity. PhD thesis, University of Wisconsin-Madison (2008)

  9. Rudinger G., Somers L.M.: Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960)

    Article  MATH  Google Scholar 

  10. Haas J.F., Sturtevant B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  Google Scholar 

  11. Layes G., Jourdan G., Houas L.: Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity. Phys. Fluids 17, 028103 (2005)

    Article  Google Scholar 

  12. Layes G., LeMetayer O.: Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys. Fluids 19, 042105 (2007)

    Article  Google Scholar 

  13. Layes G., Jourdan L., Houas L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21, 074102 (2009)

    Article  Google Scholar 

  14. Ranjan D., Anderson M.H., Oakley J.G., Bonazza R.: Experimental investigation of a strongly shocked gas bubble. Phys. Rev. Lett. 94, 184507 (2005)

    Article  Google Scholar 

  15. Brouillette M., Sturtevant B.: Experiments on the Richtmyer–Meshkov instability: small-scale perturbations on a plane interface. Phys. Fluids A 5, 916–930 (1993)

    Article  Google Scholar 

  16. Kelvin L.: The translatory velocity of a circular vortex ring. Philos. Mag. 33, 511–512 (1867)

    Google Scholar 

  17. Haehn N., Weber C., Oakley J., Anderson M., Ranjan D., Bonazza R.: Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry. Shock Waves 21, 225–231 (2011)

    Article  Google Scholar 

  18. Haehn N., Ranjan D., Weber C., Oakley J., Anderson M., Bonazza R.: Experimental investigation of a twice-shocked spherical density inhomogeneity. Phys. Scr. T 142, 014067 (2010)

    Article  Google Scholar 

  19. Gharib M., Rambod E., Shariff K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shusser M., Gharib M.: Energy and velocity of a forming vortex ring. Phys. Fluids 12, 618–621 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zabusky N.J., Zeng S.M.: Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock–spherical fast/slow bubble interactions. J. Fluid Mech. 362, 327–346 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ranjan D., Oakley J., Bonazza R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ranjan D., Niederhaus J., Oakley J., Anderson M., Bonazza R., Greenough J.: Shock–bubble interactions: features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20, 036101 (2008)

    Article  Google Scholar 

  24. Ranjan D., Niederhaus J., Oakley J., Anderson M., Bonazza R., Greenough J.: Experimental and numerical investigation of shock-induced distortion of a spherical gas inhomogeneity. Phys. Scr. T 132, 014020 (2008)

    Article  Google Scholar 

  25. Cohen R.D.: Shattering of a liquid drop due to impact. Proc. R Soc. Lond. A 435, 483–503 (1991)

    Article  Google Scholar 

  26. Widnall S.E., Bliss D.B., Tsai C.Y.: The instability of short waves on a vortex ring. J. Fluid Mech. 66, 35–47 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Haehn.

Additional information

Communicated by F. Seiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haehn, N., Weber, C., Oakley, J. et al. Experimental study of the shock–bubble interaction with reshock. Shock Waves 22, 47–56 (2012). https://doi.org/10.1007/s00193-011-0345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0345-8

Keywords

Navigation