Skip to main content
Log in

A study of slipstreams in triple shock wave configurations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A shock wave appearing in supersonic gas flow reflects in different ways depending on flow conditions. It can take the form of regular or irregular reflection. For the irregular reflection configuration of three shock waves and a slipstream arises. Mathematical investigations of the development of parameters across slipstream in triple shock configuration have been made with variation of the angle of incidence of the shock wave, the shock wave Mach number and the adiabatic index of the gas. It has been shown that the characteristic mixing parameters of the slipstream increase with the increase of Mach number of the flow and the decrease of the heat capacity ratio. This leads to an increase of vortex formation and an increase of the angular spread of the slipstream. It also has been shown that the angle between the reflected wave and the slipstream diminishes with the decrease in heat capacity ratio so that the value may become of the same order as the spread angle. This may lead to quantitative changes in the whole reflection pattern near the triple point. The evident dependence of slipstream instability magnitude on the physical and chemical transformation intensity in the fluid was previously experimentally observed. The results of an analytical investigation appeared to be in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(M_0\) :

Mach number of incident shock wave

\(M_1\) :

Mach number of gas flow

\(a\) :

Speed of sound

\(u\) :

Normal component of gas velocity relative to the shock wave

\(V\) :

Absolute velocity of gas flow

\(P\) :

Pressure

\(T\) :

Temperature

\(h\) :

Enthalpy

\(\rho \) :

Density

\(R\) :

Universal gas constant

\(\mu \) :

Molecular weight

\(\gamma \) :

Adiabatic index or ratio of specific heats

\(\chi \) :

Angle between triple point path and the wedge surface

\(\alpha _0\) :

Wedge angle

\(\omega _1\) :

Incidence wave angle

\(\omega _2\) :

Reflected wave angle

\(\phi \) :

Inclination angle

\(\omega _{RT}\) :

Angle between reflected wave and the slipstream

\(\delta \) :

Slipstream spread angle

References

  1. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge. ISBN:0521663962 (1970)

  2. Bazhenova, T.V., Gvozdeva, L.G., Lobastov, Y.S., Naboko, I.M., Nemkov, R.G., Predvoditeleva, O.A.: Shock waves in real gases. English translation NASA TTS-585, Washington D.C. (1969)

  3. Bazhenova, T.V., Gvozdeva, L.G.: Unsteady Intersection of Shock Wave (in Russian). Nauka, Moscow (1977)

    Google Scholar 

  4. Bazhenova, T.V., Gvozdeva, L.G., Nettleton, M.A.: Unsteady interaction of shock waves. Prog. Aerosp. Sci. 21(3), 249–331 (1984)

    Article  Google Scholar 

  5. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  6. Brown, G., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64(4), 775–816 (1974)

    Article  Google Scholar 

  7. Gavrenkov, S.A., Gvozdeva, L.G.: Numerical investigation of the onset of instability of triple shock configurations in steady supersonic gas flows. Tech. Phys. Lett. 38(6), 587–589 (2012)

    Article  Google Scholar 

  8. Gvozdeva, L.G., Predvoditeleva, O.A.: Experimental investigation of Mach reflection and shock waves with velocities of 1000–3000 m/sec in carbon dioxide gas, nitrogen and air. Sov. Phys. Dokl. 10(8), 694–697 (1965)

    Google Scholar 

  9. Gvozdeva, L.G., Gavrenkov, S.A.: Formation of triple shock configurations with negative reflection angle in steady flows. Tech. Phys. Lett. 38(4), 372–374 (2012)

    Article  Google Scholar 

  10. Gvozdeva, L.G., Gavrenkov, S.A.: Influence of the adiabatic index on switching between different types of shock wave reflection in a steady supersonic gas flow. Tech. Phys. 58(8), 1238–1241 (2013)

    Article  Google Scholar 

  11. Hornung, A.: Regular and Mach reflection of shock waves. Ann. Rev. Fluid Mech. 18, 33–58 (1986)

    Article  Google Scholar 

  12. Ivanov, I.E., Kryukov, I.A: III International Scientific and Technical Conference Aeroengines of XXI century. Moscow (2010)

  13. Ivtanthermo database. www.chem.msu.su/rus/handbook/ivtan/welcome.html (In Russian)

  14. Jackson, T.L., Grosch, C.E.: Inviscid spatial stability of a compressible mixing layer. J. Fluid Mech. 208, 609–637 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kudryavtsev, A.N., Khotyanovsky, D.V.: Numerical investigation of high speed free shear flow instability and Mach wave radiation. Int. J. Aeroacoust. 4(3–4), 325–344 (2005)

    Article  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Second Edition (Course of Theoretical Physics, Volume 6). Butterworth-Heinemann, Oxford (1987)

    Google Scholar 

  17. Massa, L., Austin, J.M.: Spatial linear stability analysis of a hypersonic shear layer with non-equilibrium thermochemistry. Phys. Fluids 20(8), 084104 (2008)

    Article  Google Scholar 

  18. Neumann von, J.: Oblique reflection of shock waves, Collected Works of J. Von Neumann, vol. 6. Pergamon Press, Oxford (1963)

    Google Scholar 

  19. Rikanati, A., Alon, U., Shvarts, D.: Vortex-merger statistical-mechanics model for the late time self-similar evolution of the Kelvin-Helmholtz instability. Phys. Fluids 15(12), 3776–3785 (2003)

    Article  MathSciNet  Google Scholar 

  20. Rikanati, A., Sadot, O., Ben-Dor, G., Shvarts, D., Kuribayashi, T., Takayama, K.: Shock-wave Mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon. Phys. Rev. Lett. 96, 174503:1–174503:4 (2006)

    Article  Google Scholar 

  21. Semenov, A.N., Syshchikova, M.P.: Properties of Mach reflection in shock wave intersection with a fixed wedge. Fiz. Goren Vzryva, No.4, pp. 596–608 (1975)

  22. Semenov, A.N., Syschikova, M.P., Berezkina, M.K.: Experimental investigation of Mach reflection in a shock tube. Sov. Tech. Phys. 15, 795–803 (1970)

    Google Scholar 

  23. Semenov, A.N., Berezkina, M.K., Krassovskaya, I.V.: Classification of pseudo-steady shock wave reflection types. Shock Waves 22, 307–316 (2012)

    Article  Google Scholar 

  24. Skews, B.W.: The flow in the vicinity of a three-shock intersection. CASI Trans. 4, 99–107 (1971)

    Google Scholar 

  25. Uskov, V.N., Chernyshov, M.V.: Special and extreme triple shock-waves configurations. J. Appl. Mech. Tech. Phys. 47(4), 492–504 (2006)

    Article  MathSciNet  Google Scholar 

  26. Vasilev, E.I., Ben-Dor, G., Elperin, T., Henderson, L.F.: Wall-jetting effect in Mach reflection: Navier–Stokes Simulations. J. Fluid Mech. 511, 363–379 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zeldovich, Y.B.: Shock Wave Theory and Introduction to Gas Dynamics. Akademia Press, Moscow (1945). (in Russian)

    Google Scholar 

Download references

Acknowledgments

The present study is supported in part by the Russian Research Foundation for the Fundamental Sciences Grant 12-01-31362 and 14-08-01070. The authors gratefully thank Prof. Beric Skews for his insightful help in preparing this paper. Thanks are also due to the reviewers for their astute and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gvozdeva.

Additional information

Communicated by G. Ciccarelli.

This paper is based on work that was presented at the 24th International Colloquium on the Dynamics of Explosions and Reactive Systems, Taipei, Taiwan, July 28–August 2, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdeva, L., Gavrenkov, S. & Nesterov, A. A study of slipstreams in triple shock wave configurations. Shock Waves 25, 283–291 (2015). https://doi.org/10.1007/s00193-015-0568-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0568-1

Keywords

Navigation