Skip to main content
Log in

Expansion tube nozzle design using a parallel simplex algorithm

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A new hypersonic Mach 12 nozzle has been designed and manufactured for a large-scale expansion tube. The nozzle design goals were to produce a Mach 12 flow, with a core flow diameter of at least 300 mm and a maximum exit flow angle non-uniformity of less than \({2}^{\circ }\). The nozzle has been designed by coupling a RANS CFD solver with a parallel simplex algorithm to solve the computationally expensive optimisation problem. Novel aspects of this analysis are that it addresses nozzle optimisation specifically for scramjet test flows, characterised by high pressures and thick boundary layers. A new MPI implementation of a block-marching technique is used to solve the flowfield, which is optimised with a parallel Nelder–Mead algorithm. The validity of the objective functions is discussed through a robust bootstrapping analysis, and off-design performance of the nozzle is also characterised. The analysis demonstrates that the optimised contour achieves the design objectives and has excellent off-design performance. Initial commissioning experiments confirmed the results of the numerical analysis. Despite the final operating conditions being slightly off-design, the nozzle was able to produce an experimental core flow exceeding the numerical predictions. Indeed, the manufactured nozzle, 2.8 m long, with an exit diameter of 573 mm, has been shown experimentally to produce a core flow size of 360 mm, enabling full-scale Mach 12 scramjet experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Chinitz, W., Erdos, J.I., Rizkalla, O., Anderson, G.Y., Bushnell, D.M.: Facility opportunities and associated stream chemistry considerations for hypersonic air-breathing propulsion. J. Propuls. Power 10(1), 6–17 (1994). https://doi.org/10.2514/3.23705

    Article  Google Scholar 

  2. Bakos, R.J., Castrogiovanni, A., Calleja, J., Nucci, L., Erdos, J.I.: Expansion of the scramjet ground test envelope of the HYPULSE facility. Space Plane and Hypersonic Systems and Technology Conference, Norfolk, VA, AIAA Paper 1996-4506 (1996). https://doi.org/10.2514/6.1996-4506

  3. Morgan, R.G.: Free-piston driven expansion tubes. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, vol. 1, pp. 603–622. Academic Press, Burlington (2001). https://doi.org/10.1016/B978-012086430-0/50014-2

    Chapter  Google Scholar 

  4. Callis, L.B., Trimpi, R.L.: A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube. Technical Report R-223, NASA (1965)

  5. Chue, R.S.M., Bakos, R.J., Tsai, C.Y., Betti, A.: Design of a shock-free expansion tunnel nozzle in HYPULSE. Shock Waves 13(4), 261–270 (2003). https://doi.org/10.1007/s00193-003-0215-0

    Article  Google Scholar 

  6. Stewart, B.S.: Predicted Scramjet Testing Capabilities of the Proposed RHYFL-X Expansion Tube. PhD Thesis, University of Queensland (2004)

  7. Scott, M.P.: Development and Modelling Of Expansion Tubes. PhD Thesis, University of Queensland (2007)

  8. Gildfind, D.E., Morgan, R.G., Jacobs, P.A.: Expansion tubes in Australia. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock Wave Research, pp. 399–431. Springer (2015). https://doi.org/10.1007/978-3-319-23745-9_13

    Google Scholar 

  9. Sancho Ponce, J.: Scramjet Testing at High Total Pressure. PhD Thesis, The University of Queensland (2016). https://doi.org/10.14264/uql.2016.71

  10. McGilvray, M., Kirchhartz, R.M., Jazra, T.: Comparison of Mach 10 Scramjet measurements from different impulse facilities. AIAA J. 48(8), 1647–1651 (2010). https://doi.org/10.2514/1.J050025

    Article  Google Scholar 

  11. Davey, M.H.: A Hypersonic Nozzle for the X3 Expansion Tube. Master’s thesis, The University of Queensland (2006)

  12. Prandtl, L., Busemann, A.: Näherungsverfahren zur zeich-nerische Ermittlung von ebenen Strömungen mit Überschallgeschwindigkeit. (Trans: A Graphic Method for the Approximate Determination of Smooth Flows Exceeding Sound Velocity). Ludwig Prandtl Gesammelte Abhandlungen, pp. 986–997. Springer (1961). https://doi.org/10.1007/978-3-662-11836-8_80

    Chapter  Google Scholar 

  13. Sivells, J.C.: Aerodynamic design of axisymmetric hypersonic wind-tunnel nozzles. J. Spacecr. Rockets 7(11), 1292–1299 (1970). https://doi.org/10.2514/3.30160

    Article  Google Scholar 

  14. Edwards, A., Perkins, J.: Limitations of the method of characteristics when applied to axisymmetric hypersonic nozzle design. 28th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1990-192 (1990). https://doi.org/10.2514/6.1990-192

  15. Korte, J.J.: Aerodynamic design of axisymmetric hypersonic wind-tunnel nozzles using a least-squares/parabolized Navier–Stokes procedure. J. Spacecr. Rockets 29(5), 685–691 (1992). https://doi.org/10.2514/3.11511

    Article  Google Scholar 

  16. Shope, F.: Contour design techniques for super/hypersonic wind tunnel nozzles. 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, AIAA Paper 2006-3665 (2006). https://doi.org/10.2514/6.2006-3665

  17. Craddock, C.S.: Computational Optimization of Scramjets and Shock Tunnel Nozzles. PhD Thesis, The University of Queensland (1999)

  18. Chan, W.Y.K., Jacobs, P.A., Smart, M.K., Grieve, S., Craddock, C.S., Doherty, L.J.: Aerodynamic design of nozzles with uniform outflow for hypervelocity ground-test facilities. J. Propuls. Power 34(6), 1467–1478 (2018). https://doi.org/10.2514/1.b36938

    Article  Google Scholar 

  19. Leyva, I.: Study of the addition of a divergent nozzle to an expansion tube for increasing test time. 25th Plasmadynamics and Lasers Conference, Colorado Springs, CO, AIAA Paper 1994-2533 (1994). https://doi.org/10.2514/6.1994-2533

  20. Stewart, B., Morgan, R.G., Jacobs, P.A., Austin, K., Jenkins, D.: Establishment of test conditions in the RHYFL-X facility. 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, AIAA Paper 2001-3678 (2001). https://doi.org/10.2514/6.2001-3678

  21. Gollan, R.J., Jacobs, P.A.: About the formulation, verification and validation of the hypersonic flow solver Eilmer. Int. J. Numer. Methods Fluid 73(1), 19–57 (2013). https://doi.org/10.1002/fld.3790

    Article  MathSciNet  Google Scholar 

  22. Lee, D., Wiswall, M.: A parallel implementation of the simplex function minimization routine. Comput. Econ. 30(2), 171–187 (2007). https://doi.org/10.1007/s10614-007-9094-2

    Article  MATH  Google Scholar 

  23. Chan, W.Y.K., Jacobs, P.A., Mee, D.J.: Suitability of the \(k\)-\(\omega \) turbulence model for scramjet flowfield simulations. Int. J. Numer. Methods Fluids 70(4), 493–514 (2012). https://doi.org/10.1002/fld.2699

    Article  MathSciNet  MATH  Google Scholar 

  24. Gildfind, D.E., Jacobs, P.A., Morgan, R.G., Chan, W.Y.K., Gollan, R.J.: Scramjet test flow reconstruction for a large-scale expansion tube, part 2: axisymmetric CFD analysis. Shock Waves 28(4), 899–918 (2018). https://doi.org/10.1007/s00193-017-0786-9

    Article  Google Scholar 

  25. Tanimizu, K., Mee, D.J., Stalker, R.J., Jacobs, P.A.: Drag force on quasi-axisymmetric scramjets at various flight Mach numbers: theory and experiment. Shock Waves 19(2), 83–93 (2009). https://doi.org/10.1007/s00193-009-0194-x

    Article  Google Scholar 

  26. Wheatley, V., Chiu, H.S., Jacobs, P.A., Macrossan, M.N., Mee, D.J., Morgan, R.G.: Rarefied, superorbital flows in an expansion tube. Int. J. Numer. Methods Heat Fluid Flow 14(4), 512–537 (2004). https://doi.org/10.1108/09615530410532277

    Article  Google Scholar 

  27. Doherty, L., Chan, Y.K.W., Zander, F., Jacobs, P.A., Gollan, R.J., Kirchhartz, R.M.: NENZF-r: Non-equilibrium Nozzle Flow, Reloaded. A User Guide. Technical Report, University of Queensland (2011)

  28. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  29. Korte, J.J., Kumar, A., Singh, D., White, J.: CAN-DO, CFD-based aerodynamic nozzle design and optimization program for supersonic/hypersonic wind tunnels. 17th Aerospace Ground Testing Conference, Nashville, TN, AIAA Paper 1992-4009 (1992). https://doi.org/10.2514/6.1992-4009

  30. Jacobs, P.A., Gourlay, C.M.: An interactive method-of-characteristics program for gas-dynamic calculations. Int. J. Appl. Eng. Educ. 7(3), 242–250 (1991)

    Google Scholar 

  31. Gildfind, D.E., Jacobs, P.A., Morgan, R.G., Chan, W.Y.K., Gollan, R.J.: Scramjet test flow reconstruction for a large-scale expansion tube, part 1: quasi-one-dimensional modelling. Shock Waves 28(4), 877–897 (2018). https://doi.org/10.1007/s00193-017-0785-x

    Article  Google Scholar 

  32. Wise, D.: Experimental Investigation of a Three Dimensional Scramjet Engine at Hypervelocity Conditions. PhD Thesis, The University of Queensland (2015). https://doi.org/10.14264/uql.2015.465

  33. McGilvray, M.: Scramjet Testing at High Enthalpies in Expansion Tube Facilities. PhD Thesis, University of Queensland (2008)

  34. Erdos, J.I., Bakos, R.J.: Prospects for a quiet hypervelocity shock-expansion tunnel. 25th Plasmadynamics and Lasers Conference, Fluid Dynamics and Co-located Conferences, Colorado Springs, CO, AIAA Paper 1994-2500 (1994). https://doi.org/10.2514/6.1994-2500

  35. Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.: A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. Technical Report NASA-RP-1232, NASA (1990)

  36. Baldwin, B., Lomax, H.: Thin-layer approximation and algebraic model for separated turbulent flows. 16th Aerospace Sciences Meeting, Huntsville, AL, AIAA Paper 1978-257 (1978). https://doi.org/10.2514/6.1978-257

  37. Wilcox, D.: Formulation of the \(k\)-\(\omega \) turbulence model revisited. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2007-1408 (2007). https://doi.org/10.2514/6.2007-1408

  38. Smart, M.K.: Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition. J. Propuls. Power 15(3), 408–416 (1999). https://doi.org/10.2514/2.5459

    Article  Google Scholar 

  39. Suraweera, M.V., Smart, M.K.: Shock-tunnel experiments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions. J. Propuls. Power 25(3), 555–564 (2009). https://doi.org/10.2514/1.37946

    Article  Google Scholar 

  40. Stern, F., Wilson, R., Shao, J.: Quantitative V&V of CFD simulations and certification of CFD codes. Int. J. Numer. Methods Fluids 50(11), 1335–1355 (2006). https://doi.org/10.1002/fld.1090

    Article  MATH  Google Scholar 

  41. Roache, P.J.: Perspective: A method for uniform reporting of grid refinement studies. J. Fluids Eng. 116(3), 405 (1994). https://doi.org/10.1115/1.2910291

    Article  Google Scholar 

  42. Nompelis, I., Drayna, T.W., Candler, G.V.: Development of a hybrid unstructured implicit solver for the simulation of reacting flows over complex geometries. 34th AIAA Fluid Dynamics Conference and Exhibit, Portland, OR, AIAA Paper 2004-2227 (2004). https://doi.org/10.2514/6.2004-2227

  43. Andrianatos, A., Gildfind, D.E., Morgan, R.G.: Driver condition development for high enthalpy operation of the X3 expansion tube. 31st International Symposium on Shock Waves. Nagoya (2017)

  44. Toniato, P.: Free-Jet Testing of a Mach 12 Scramjet in an Expansion Tube. PhD Thesis, The University of Queensland (2018). https://doi.org/10.14264/uql.2019.342

  45. Miller, V.A., Gamba, M., Mungal, M.G., Hanson, R.K.: Secondary diaphragm thickness effects and improved pressure measurements in an expansion tube. AIAA J. 52(2), 451–456 (2014). https://doi.org/10.2514/1.j052767

    Article  Google Scholar 

  46. McGilvray, M., Morgan, R.G., Jacobs, P.A.: Scramjet experiments in an expansion tunnel: evaluated using a quasi-steady analysis technique. AIAA J. 48(8), 1635–1646 (2010). https://doi.org/10.2514/1.J050024

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by an Australian Government Research Training Program (RTP) Scholarship and the Cooperative Research Centre for Space Environment Management (SERC Limited) through the Australian Government’s Cooperative Research Centre Program. This research was undertaken with support and funding of the Australian Research Council. The computations were done on Tinaroo with support of the UQ High Performance Computing (HPC) group. The authors finally wish to thank F. De Beurs and N. Duncan for technical assistance with the nozzle hardware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Toniato.

Additional information

Communicated by A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toniato, P., Gildfind, D.E., Jacobs, P.A. et al. Expansion tube nozzle design using a parallel simplex algorithm. Shock Waves 30, 185–199 (2020). https://doi.org/10.1007/s00193-019-00930-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00930-2

Keywords

Navigation