Skip to main content
Log in

Fully Localised Solitary-Wave Solutions of the Three-Dimensional Gravity–Capillary Water-Wave Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A model equation derived by Kadomtsev & Petviashvili (Sov Phys Dokl 15:539–541, 1970) suggests that the hydrodynamic problem for three-dimensional water waves with strong surface-tension effects admits a fully localised solitary wave which decays to the undisturbed state of the water in every horizontal spatial direction. This prediction is rigorously confirmed for the full water-wave problem in the present paper. The theory is variational in nature. A simple but mathematically unfavourable variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle with significantly better mathematical properties. The reduced functional is related to the functional associated with the Kadomtsev–Petviashvili equation, and a nontrivial critical point is detected using the direct methods of the calculus of variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Segur H. (1979) On the evolution of packets of water waves. J. Fluid Mech. 92: 691–715

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Adams R.A., Fournier J.J.F. (2003) Sobolev Spaces 2nd edn. Elsevier, Oxford (Pure and applied mathematics series 140)

    MATH  Google Scholar 

  3. Amick C.J., Kirchgässner K. (1989) A theory of solitary water waves in the presence of surface tension. Arch. Ration. Mech. Anal. 105: 1–49

    Article  MATH  Google Scholar 

  4. Bona J., Chen H.Q. (2002) Solitary waves in nonlinear dispersive systems. Discrete Contin. Dyn. Syst. Ser. B 2: 313–378

    MATH  MathSciNet  Google Scholar 

  5. Brezis H., Nirenberg L. (1991) Remarks on finding critical points. Commun. Pure Appl. Math. 44: 939–963

    Article  MathSciNet  MATH  Google Scholar 

  6. Buffoni B. (2004a) Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173: 25–68

    Article  MATH  MathSciNet  Google Scholar 

  7. Buffoni B. (2004b) Existence by minimisation of solitary water waves on an ocean of infinite depth. Ann. Inst. Henri Poincaré Anal. Non Linéaire 21: 503–516

    Article  MATH  MathSciNet  Google Scholar 

  8. Buffoni B., Groves M.D. (1999) A multiplicity result for solitary gravity–capillary waves in deep water via critical-point theory. Arch. Ration. Mech. Anal. 146: 183–220

    Article  MATH  MathSciNet  Google Scholar 

  9. Buffoni B., Groves M.D., Toland J.F. (1996) A plethora of solitary gravity–capillary water waves with nearly critical Bond and Froude numbers. Phil. Trans. R. Soc. Lond. A 354: 575–607

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Buffoni B., Dancer E.N., Toland J.F. (2000a) The regularity and local bifurcation of steady periodic water waves. Arch. Ration. Mech. Anal. 152: 207–240

    Article  MATH  MathSciNet  Google Scholar 

  11. Buffoni B., Dancer E.N., Toland J.F. (2000b) The sub-harmonic bifurcation of Stokes waves. Arch. Ration. Mech. Anal. 152: 241–271

    Article  MATH  MathSciNet  Google Scholar 

  12. Buffoni B., Séré E., Toland J.F. (2003) Surface water waves as saddle points of the energy. Calc. Var. PDE 2: 199–220

    Article  Google Scholar 

  13. Craig W. (2002) Nonexistence of solitary water waves in three dimensions. Phil. Trans. R. Soc. Lond. A 360: 2127–2135

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Craig W., Nicholls D.P. (2000) Traveling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32: 323–359

    Article  MATH  MathSciNet  Google Scholar 

  15. de Bouard A., Saut J.-C. (1997) Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14: 211–236

    Article  MATH  Google Scholar 

  16. Groves M.D. (1998) Solitary-wave solutions to a class of fifth-order model equations. Nonlinearity 11: 341–353

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Groves M.D. (2001) An existence theory for three-dimensional periodic travelling gravity–capillary water waves with bounded transverse profiles. Physica D 152–153: 395–415

    Article  MathSciNet  Google Scholar 

  18. Groves M.D., Haragus M. (2003) A bifurcation theory for three-dimensional oblique travelling gravity–capillary water waves. J. Nonlin. Sci. 13: 397–447

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Groves M.D., Mielke A. (2001) A spatial dynamics approach to three-dimensional gravity–capillary steady water waves. Proc. R. Soc. Edin. A 131: 83–136

    MATH  MathSciNet  Google Scholar 

  20. Groves M.D., Haragus M., Sun S.-M. (2002) A dimension-breaking phenomenon in the theory of gravity–capillary water waves. Phil. Trans. R. Soc. Lond. A 360: 2189–2243

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Hardy G., Littlewood J.E., Pólya G. (1988) Inequalities, paperback edn. Cambridge University Press, Cambridge

    Google Scholar 

  22. Hutson V., Pym J.S. (1980) Applicatons of Functional Analysis and Operator Theory. Academic, London

    Google Scholar 

  23. Kadomtsev B.B., Petviashvili V.I. (1970) On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15: 539–541

    MATH  ADS  Google Scholar 

  24. Kichenassamy S. (1997) Existence of solitary waves for water-wave models. Nonlinearity 10: 133–151

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Kirchgässner K. (1988) Nonlinearly resonant surface waves and homoclinic bifurcation. Adv. Appl. Mech. 26: 135–181

    MATH  Google Scholar 

  26. Levandosky S.P. (2000) A stability analysis of fifth-order water wave models. Physica D 125: 222–240

    Article  ADS  MathSciNet  Google Scholar 

  27. Lions J.L., Magenes E. (1961) Probleme ai limiti non omogenei (III). Ann. Scuola Norm. Sup. Pisa 15: 41–103

    MathSciNet  Google Scholar 

  28. Lions P.L. (1984a) The concentration-compactness principle in the calculus of variations—the locally compact case, part 1. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1: 109–145

    MATH  Google Scholar 

  29. Lions P.L. (1984b) The concentration-compactness principle in the calculus of variations—the locally compact case, part 2. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1: 223–283

    MATH  Google Scholar 

  30. Luke J.C. (1967) A variational principle for a fluid with a free surface. J. Fluid Mech. 27: 395–397

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Mazya V. (1985) Sobolev Spaces. Springer-Verlag, New York

    Google Scholar 

  32. Mielke A. (1991) Hamiltonian and Lagrangian Flows on Center Manifolds. Springer-Verlag, Berlin

    MATH  Google Scholar 

  33. Moser J. (1976) Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure Appl. Math. 29: 727–747

    Article  ADS  MATH  Google Scholar 

  34. Pego R.L., Quintero J.R. (1999) Two-dimensional solitary waves for a Benny–Luke equation. Physica D 132: 476–496

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Plotnikov P.I. (1992) Nonuniqueness of solutions of the problem of solitary waves and bifurcation of critical points of smooth functionals. Math. USSR Izvestiya 38: 333–357

    Article  MathSciNet  Google Scholar 

  36. Sachs R.L. (1991) On the existence of small amplitude solitary waves with strong surface-tension. J. Differ. Eqn. 90: 31–51

    Article  MATH  MathSciNet  Google Scholar 

  37. Stein E.M. (1970) Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton

    MATH  Google Scholar 

  38. Stoker J.J. (1957) Water Waves: The Mathematical Theory with Applications. Interscience, New York

    MATH  Google Scholar 

  39. Tajiri M., Murakami Y. (1990) The periodic solution resonance: solutions of the Kadomtsev–Petviashvili equation with positive dispersion. Phys. Lett. A 143: 217–220

    Article  ADS  MathSciNet  Google Scholar 

  40. Turner R.E.L. (1984) A variational approach to surface solitary waves. J. Differ. Eqn. 55: 401–438

    Article  MATH  Google Scholar 

  41. Wang X.P., Ablowitz M.J., Segur H. (1994) Wave collapse and instability of solitary waves of a generalized Kadomtsev–Petviashvili equation. Physica D 78: 241–265

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Weinstein M.I. (1987) Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Part. Differ. Eqn. 12: 1133–1173

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Groves.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groves, M.D., Sun, SM. Fully Localised Solitary-Wave Solutions of the Three-Dimensional Gravity–Capillary Water-Wave Problem. Arch Rational Mech Anal 188, 1–91 (2008). https://doi.org/10.1007/s00205-007-0085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0085-1

Keywords

Navigation