Skip to main content
Log in

On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3β-1 V(N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169–185, 2008) for \({\beta \in (0, 2/7]}\) by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for \({\beta \in (0, 1/4)}\) in the absence of a trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  2. Beals M., Bezard M.: Nonlinear field equations: not necessarily bounded solutions. Journées équations aux dérivées partielles 20, 1–13 (1992)

    Google Scholar 

  3. Carles R.: Nonlinear Schrödinger equation with time dependent potential. Commun. Math. Sci. 9, 937–964 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cornish S.L., Claussen N.R., Roberts J.L., Cornell E.A., Wieman C.E.: Stable 85Rb Bose–Einstein condensates with widely turnable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000)

    Article  ADS  Google Scholar 

  5. Chen T., Pavlović N.: On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Discrete Contin. Dyn. Syst. 27, 715–739 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen T., Pavlović N.: The Quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Funct. Anal. 260, 959–997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody dynamics in d=3 based on spacetime norms. Annales Henri Poincaré. (2013). doi:10.1007/s00023-013-0248-6 (arXiv:1111.6222)

  8. Chen T., Pavlović N., Tzirakis N.: Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies. Ann. I. H. Poincaré 27, 1271–1290 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Chen T., Pavlović N., Tzirakis N.: Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy. Contempor. Math. 581, 39–62 (2012)

    Article  Google Scholar 

  10. Chen X.: Classical proofs of Kato type smoothing estimates for the Schrödinger equation with quadratic potential in \({\mathbb{R}^{n+1}}\) with application. Differ. Integr. Equ. 24, 209–230 (2011)

    MATH  Google Scholar 

  11. Chen X.: Second order corrections to mean field evolution for weakly interacting Bosons in the case of three-body interactions. Arch. Rational Mech. Anal. 203, 455–497 (2012)

    Article  ADS  MATH  Google Scholar 

  12. Chen X.: Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps. J. Math. Pures Appl. 98, 450–478 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Clade P., Ryu C., Ramanathan A., Helmerson K., Phillips W.D.: Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009)

    Article  ADS  Google Scholar 

  14. Davis K.B., Mewes M.-O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  15. Elgart A., Erdös L., Schlein B., Yau H.T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled Bosons. Arch. Rational Mech. Anal. 179, 265–283 (2006)

    Article  ADS  MATH  Google Scholar 

  16. Erdös L., Yau H.T.: Derivation of the non-linear Schrödinger equation from a many-body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Erdös L., Schlein B., Yau H.T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59, 1659–1741 (2006)

    Article  MATH  Google Scholar 

  18. Erdös L., Schlein B., Yau H.T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Erdös L., Schlein B., Yau H.T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98, 040404 (2007)

    Article  ADS  Google Scholar 

  20. Erdös L., Schlein B., Yau H.T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)

    Article  MATH  Google Scholar 

  21. Erdös L., Schlein B., Yau H.T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. 172, 291–370 (2010)

    Article  MATH  Google Scholar 

  22. Grillakis M.G., Margetis D.: A priori estimates for many-body Hamiltonian evolution of interacting Boson system. J. Hyperb. Differ. Eqs. 5, 857–883 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grillakis M.G., Machedon M., Margetis D.: Second order corrections to mean field evolution for weakly interacting Bosons. I. Commun. Math. Phys. 294, 273–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grillakis M.G., Machedon M., Margetis D.: Second order corrections to mean field evolution for weakly interacting Bosons. II. Adv. Math. 228, 1788–1815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gross E.P.: Structure of a quantized vortex in Boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MATH  Google Scholar 

  26. Gross E.P.: Hydrodynamics of a super fluid condenstate. J. Math. Phys. 4, 195–207 (1963)

    Article  ADS  Google Scholar 

  27. Ketterle W., van Druten N.J.: Evaporative cooling of trapped atoms. Adv. Atom. Molec. Opt. Phys. 37, 181–236 (1996)

    Article  ADS  Google Scholar 

  28. Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Am. J. Math. 133, 91–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klainerman S., Machedon M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46, 1221–1268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klainerman S., Machedon M.: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Commun. Math. Phys. 279, 169–185 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  32. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation.Birkhaüser Verlag, Basel, 2005

  33. Penrose O., Onsager L.: Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956)

    Article  ADS  MATH  Google Scholar 

  34. Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  35. Simon, B.: Trace Ideals and Their Applications, 2nd edn. Mathematical Surveys Monogr. vol. 120. Amer. Math. Soc., Providence, 2005

  36. Spohn H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52, 569–615 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  37. Stamper-Kurn D.M., Andrews M.R., Chikkatur A.P., Inouye S., Miesner H.-J., Stenger J., Ketterle W.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)

    Article  ADS  Google Scholar 

  38. Thangavelu S.: Regularity of twisted spherical means and special hermite expansions. Proc. Indian Acad. Sci. (Math. Sci.) 103, 303–320 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yajima K., Zhang G.: Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity. J. Differ. Equ. 202, 81–110 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuwen Chen.

Additional information

Communicated by P.-L. Lions

Dedicated to Xuqing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X. On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap. Arch Rational Mech Anal 210, 365–408 (2013). https://doi.org/10.1007/s00205-013-0645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0645-5

Keywords

Navigation