Skip to main content
Log in

On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we extend and complement the results in Chiodaroli et al. (Global ill-posedness of the isentropic system of gas dynamics, 2014) on the well-posedness issue for weak solutions of the compressible isentropic Euler system in 2 space dimensions with pressure law p(ρ) = ρ γ, γ ≥ 1. First we show that every Riemann problem whose one-dimensional self-similar solution consists of two shocks admits also infinitely many two-dimensional admissible bounded weak solutions (not containing vacuum) generated by the method of De Lellis and Székelyhidi (Ann Math 170:1417–1436, 2009), (Arch Ration Mech Anal 195:225–260, 2010). Moreover we prove that for some of these Riemann problems and for 1 ≤ γ < 3 such solutions have a greater energy dissipation rate than the self-similar solution emanating from the same Riemann data. We therefore show that the maximal dissipation criterion proposed by Dafermos in (J Diff Equ 14:202–212, 1973) does not favour the classical self-similar solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressan, A.: Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. Oxford Lecture Series in Mathematics and its Applications, vol. 20. Oxford University Press, Oxford, (2000)

  2. Buckmaster, T., De Lellis, C., Székelyhidi, L.J.: Transporting microstructure and dissipative Euler flows. Preprint (2013)

  3. Chiodaroli, E.: A counterexample to well-posedeness of entropy solutions to the compressible Euler system. JHDE (to appear, 2014)

  4. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. (to appear, 2014)

  5. Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Annales IHP-ANL (to appear, 2014)

  6. Cordoba D., Faraco D., Gancedo F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dafermos C.M.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differ. Equ. 14, 202–212 (1973)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Dafermos C.M.: Maximal dissipation in equations of evolution. J. Differ. Equ. 252, 567–587 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, vol. 325 of Grundleheren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 3rd edn. Springer, Berlin (2010)

  10. Daneri S.: Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations. Comm. Math. Phys. 329(2), 745–786 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. De Lellis C., Székelyhidi L.J.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MATH  Google Scholar 

  12. De Lellis C., Székelyhidi L.J.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Lellis C., Székelyhidi L.J.: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.) 49(3), 347–375 (2012)

    Article  MATH  Google Scholar 

  14. De Lellis C., Székelyhidi L.J.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. De Lellis, C., Székelyhidi, L.J.: Dissipative Euler flows and Onsager’s conjecture. JEMS (to appear, 2014)

  16. Di Perna R.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979)

    Article  MathSciNet  Google Scholar 

  17. Feireisl, E.: Maximal dissipation and well-posedness for the compressible Euler system. J. Math. Fluid Mech. (to appear, 2014)

  18. Hsiao L.: The entropy rate admissibility criterion in gas dynamics. J. Differ. Equ. 38, 226–238 (1980)

    Article  MATH  ADS  Google Scholar 

  19. Lax, P.D.: Shock waves and entropy. Contrib. Nonlinear Funct. Anal., 603–634 (1971)

  20. Liu T.-P., Smoller J.A.: On the vacuum state for the isentropic gas dynamics equations. Adv. Appl. Math. 1(4), 345–359 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shvidkoy R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011)

    Article  Google Scholar 

  22. Székelyhidi L.J.: Weak solutions to the incompressible Euler equations with vortex sheet initial data. C. R. Acad. Sci. Paris Ser. I 349(19–20), 1063–1066 (2011)

    Article  MATH  Google Scholar 

  23. Székelyhidi L.J.: Relaxation of the incompressible porous media equation. Ann. Sci. l’ENS 45(3), 491–509 (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Chiodaroli.

Additional information

Communicated by C. Dafermos

The work of O.K. is part of the SCIEX project 11.152.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiodaroli, E., Kreml, O. On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System. Arch Rational Mech Anal 214, 1019–1049 (2014). https://doi.org/10.1007/s00205-014-0771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0771-8

Keywords

Navigation