Skip to main content
Log in

An algorithm for the fast solution of symmetric linear complementarity problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper studies algorithms for the solution of mixed symmetric linear complementarity problems. The goal is to compute fast and approximate solutions of medium to large sized problems, such as those arising in computer game simulations and American options pricing. The paper proposes an improvement of a method described by Kocvara and Zowe (Numer Math 68:95–106, 1994) that combines projected Gauss–Seidel iterations with subspace minimization steps. The proposed algorithm employs a recursive subspace minimization designed to handle severely ill-conditioned problems. Numerical tests indicate that the approach is more efficient than interior-point and gradient projection methods on some physical simulation problems that arise in computer game scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageia physx. Web page. http://www.ageia.com/physx/ (2006)

  2. Anitescu M., Potra F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertsekas D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birgin E.G., Martínez J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets. SIOPT 10, 1196–1211 (2000)

    MATH  Google Scholar 

  6. Birgin E.G., Martínez J.M., Raydan M.: Algorithm 813: Spg-software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  7. Burke J.V., Moré J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25(5), 1197–1211 (1998)

    Article  Google Scholar 

  8. Catto, E.: Iterative dynamics with temporal coherence. Technical report, Crystal Dynamics, Menlo Park (2005)

  9. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25(182):433–460 (1988) [See also SIAM J. Numer. Anal. 26:764–767 (1989)]

    Google Scholar 

  10. Conn A.R., Gould N.I.M., Toint Ph.L.: LANCELOT: a Fortran package for Large-scale Nonlinear Optimization (Release A). Springer Series in Computational Mathematics. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  11. Cottle R.W., Dantzig G.B.: Complementarity pivot theory of mathematical programming. J. Linear Algebra Applns 1, 103–125 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Academic Press, London (1992)

    MATH  Google Scholar 

  13. Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100 (2005)

  14. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with COPS 3.0. Technical Report ANL/MCS-TM-273, Argonne National Laboratory, Argonne (2004)

  15. Ferris M.C., Pang J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ferris M.C., Wathen A.J., Armand P.: Limited memory solution of bound constrained convex quadratic problems arising in video games. RAIRO Oper. Res. 41, 19–34 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hager W.W., Zhang H.: A new active set algorithm for box constrained optimization. SIOPT 17(2), 526–557 (2007)

    MathSciNet  Google Scholar 

  18. Havok, F.X.: Web page. http://www.havok.com/content/view/187/77/ (2006)

  19. Kocvara M., Zowe J.: An iterative two-step algorithm for linear complementarity problems. Numer. Math. 68, 95–106 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kumar, S., Hughes, C.J., Nguyen, A. Carbon: architectural support for fine-grained parallelism on chip multiprocessors. In: Proceedings of IEEE/ACM International Symposium on Computer Architecture (ISCA), San Diego (2007)

  21. Lin C.J., Moré J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morales J.L, Sargent R.W.H.: Computational experience with several methods for large-scale convex quadratic programming. Aportaciones Matemáticas. Comunicaciones 14, 141–158 (1994)

    Google Scholar 

  23. Moré J.J., Toraldo G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1(1), 93–113 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. O’Leary D.P.: A generalized conjugate gradient algorithm for solving a class of quadratic programming problems. Linear Algebra Appl. 34, 371–399 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schenk, O.: Scalable parallel sparse LU factorization methods on shared memory multiprocessors. PhD thesis, Swiss Federal Institute of Technology, Zurich (2000)

  26. Schenk O., Gärtner K.: Solving unsymmetric sparse systems of linear equations with pardiso. J. Future Generation Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  27. Schenk O., Gärtner K.: On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)

    MATH  Google Scholar 

  28. Smelyanskiy, M., Lee, V. W., Kim, D., Nguyen, A.D., Dubey, P.: Scaling performance of interior-point methods on a large-scale chip multiprocessor system. In: SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing (2007)

  29. Smith, R.: Open dynamics engine. Technical report. http://www.ode.org (2004)

  30. Wilmott P.: Quantitative Finance. Wiley, London (2006)

    MATH  Google Scholar 

  31. Wright S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  32. Zhu C., Byrd R.H., Lu P., Nocedal J.: Algorithm 78: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Nocedal.

Additional information

The research of J. L. Morales was supported by Asociación Mexicana de Cultura AC and CONACyT-NSF grant J110.388/2006.

The research of J. Nocedal was supported by National Science Foundation grant CCF-0514772, Department of Energy grant DE-FG02-87ER25047-A004 and a grant from the Intel Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, J.L., Nocedal, J. & Smelyanskiy, M. An algorithm for the fast solution of symmetric linear complementarity problems. Numer. Math. 111, 251–266 (2008). https://doi.org/10.1007/s00211-008-0183-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0183-5

Mathematics Subject Classification (2000)

Navigation