Skip to main content
Log in

Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We introduce a central-upwind scheme for one- and two-dimensional systems of shallow-water equations with horizontal temperature gradients (the Ripa system). The scheme is well-balanced, positivity preserving and does not develop spurious pressure oscillations in the neighborhood of temperature jumps, that is, near the contact waves. Such oscillations would typically appear when a conventional Godunov-type finite volume method is applied to the Ripa system, and the nature of the oscillation is similar to the ones appearing at material interfaces in compressible multifluid computations. The idea behind the proposed approach is to utilize the interface tracking method, originally developed in Chertock et al. (M2AN Math Model Numer Anal 42:991–1019, 2008) for compressible multifluids. The resulting scheme is highly accurate, preserves two types of “lake at rest” steady states, and is oscillation free across the temperature jumps, as it is illustrated in a number of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169(2), 594–623 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004) (electronic)

    Google Scholar 

  3. Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)

  4. Chertock, A., Karni, S., Kurganov, A.: Interface tracking method for compressible multifluids. M2AN Math. Model. Numer. Anal. 42(6), 991–1019 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davis, S.F.: An interface tracking method for hyperbolic systems of conservation laws. Appl. Numer. Math. 10(6), 447–472 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dellar, P.: Common hamiltonian structure of the shallow water equations with horizontal temperature gradients and magnetic fields. Phys. Fluids 303, 292–297 (2003)

    Article  MathSciNet  Google Scholar 

  7. Gallouët, T., Hérard, J.M., Seguin, N.: Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32(4), 479–513 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glimm, J., Li, X., Liu, Y., Zhao, N.: Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. 98(25), 14,198 (2001)

    Article  MathSciNet  Google Scholar 

  9. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) (electronic)

    Google Scholar 

  10. Jin, S.: A steady-state capturing method for hyperbolic systems with geometrical source terms. M2AN Math. Model. Numer. Anal. 35(4), 631–645 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jin, S., Wen, X.: Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26(6), 2079–2101 (2005) (electronic)

    Google Scholar 

  12. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley, Chichester (1997)

  13. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36, 397–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kurganov, A., Lin, C.T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci 5(1), 133–160 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kurganov, A., Tadmor, E.: New high resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  20. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  21. Lukácová-Medvidová, M., Noelle, S., Kraft, M.: Well-balanced finite volume evolution Galerkin methods for the shallow water equations. J. Comput. Phys. 221(1), 122–147 (2007)

    Article  MathSciNet  Google Scholar 

  22. Mulder, W., Osher, S., Sethian, J.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100(2), 209–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213(2), 474–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Noelle, S., Xing, Y., Shu, C.W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226(1), 29–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ripa, P.: Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70, 85–111 (1993)

    Article  MathSciNet  Google Scholar 

  28. Ripa, P.: On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 169–201 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fedkiw, R.P., Aslam, T., B.M., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

  30. Russo, G.: Central schemes for balance laws. In: Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Eighth International Conference in Magdeburg, Birkhauser, p. 821 (2002)

  31. Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Trends and Applications of Mathematics to Mechanics. Springer, Milan, pp. 225–246 (2005)

  32. de Saint-Venant, A.: Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marèes dans leur lit. C.R. Acad. Sci. Paris 73, 147–154 (1871)

    MATH  Google Scholar 

  33. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  34. Xing, Y., Shu, C.W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208(1), 206–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xing, Y., Shu, C.W.: A new approach of high order well-balanced finite volume weno schemes and discontinuous galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to warmly thank Prof. M. Lukáčová-Medvid’ová for fruitful and valuable discussions and for pointing out a fundamental mistake in a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Chertock.

Additional information

The work of A. Chertock was supported in part by the NSF Grants DMS-1115682 and DMS-1216974 and by the ONR Grant N00014-12-1-0832. The research of A. Kurganov was supported in part by the NSF Grants DMS-1115718 and DMS-1216957 and by the ONR Grant N00014-12-1-0833.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chertock, A., Kurganov, A. & Liu, Y. Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numer. Math. 127, 595–639 (2014). https://doi.org/10.1007/s00211-013-0597-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0597-6

Mathematics Subject Classification (2000)

Navigation