Skip to main content
Log in

Minimal numerical differentiation formulas

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We investigate numerical differentiation formulas on irregular centers in two or more variables that are exact for polynomials of a given order and minimize an absolute seminorm of the weight vector. Error bounds are given in terms of a growth function that carries the information about the geometry of the centers. Specific forms of weighted \(\ell _1\) and weighted least squares minimization are proposed that produce numerical differentiation formulas with particularly good performance in numerical experiments. The results are of interest in particular for meshless generalized finite difference methods as they provide a consistency error analysis for such methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Bauer, F.L., Stoer, J., Witzgall, C.: Absolute and monotonic norms. Numer. Math. 3(1), 257–264 (1961)

    Article  MathSciNet  Google Scholar 

  3. Beatson, R., Davydov, O., Levesley, J.: Error bounds for anisotropic RBF interpolation. J. Approx. Theory 162, 512–527 (2010)

    Article  MathSciNet  Google Scholar 

  4. Benito, J., Ureña, F., Gavete, L., Alvarez, R.: An h-adaptive method in the generalized finite differences. Comput. Methods Appl. Mech. Eng. 192(5–6), 735–759 (2003)

    Article  Google Scholar 

  5. Caliari, M., Marchi, S.D., Vianello, M.: Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165(2), 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G., Raviart, P.A.: General lagrange and hermite interpolation in RN with applications to finite element methods. Arch. Ration. Mech. Anal. 46(3), 177–199 (1972)

    Article  Google Scholar 

  7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation. IMA J. Numer. Anal. 28(4), 721–748 (2008)

    Article  MathSciNet  Google Scholar 

  8. Davydov, O.: On the approximation power of local least squares polynomials. In: Levesley, J., Anderson, I.J., Mason, J.C. (eds.) Algorithms for Approximation IV, pp. 346–353. University of Huddersfield, Huddersfield (2002)

    Google Scholar 

  9. Davydov, O.: Error bound for radial basis interpolation in terms of a growth function. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Avignon 2006, pp. 121–130. Nashboro Press, Brentwood (2007)

    Google Scholar 

  10. Davydov, O., Oanh, D.T.: Adaptive meshless centres and RBF stencils for Poisson equation. J. Comput. Phys. 230, 287–304 (2011)

    Article  MathSciNet  Google Scholar 

  11. Davydov, O., Oanh, D.T.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62, 2143–2161 (2011)

    Article  MathSciNet  Google Scholar 

  12. Davydov, O., Prasiswa, J., Reif, U.: Two-stage approximation methods with extended B-splines. Math. Comput. 83, 809–833 (2014)

    Article  MathSciNet  Google Scholar 

  13. Davydov, O., Schaback, R.: Error bounds for kernel-based numerical differentiation. Numer. Math. 132(2), 243–269 (2016)

    Article  MathSciNet  Google Scholar 

  14. Davydov, O., Schaback, R.: Optimal stencils in Sobolev spaces. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drx076

  15. Davydov, O., Zeilfelder, F.: Scattered data fitting by direct extension of local polynomials to bivariate splines. Adv. Comput. Math. 21(3–4), 223–271 (2004)

    Article  MathSciNet  Google Scholar 

  16. Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary Mathematical Sciences. World Scientific Publishers, Singapore (2007)

    Book  Google Scholar 

  17. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. Society for Industrial and Applied Mathematics, Philadelphia (2015)

    Book  Google Scholar 

  18. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  19. Jetter, K., Stöckler, J., Ward, J.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733–747 (1999)

    Article  MathSciNet  Google Scholar 

  20. Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11, 83–95 (1980)

    Article  MathSciNet  Google Scholar 

  21. Oanh, D.T., Davydov, O., Phu, H.X.: Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Appl. Math. Comput. 313, 474–497 (2017)

    MathSciNet  Google Scholar 

  22. Ostermann, I., Kuhnert, J., Kolymbas, D., Chen, C.-H., Polymerou, I., Šmilauer, V., Vrettos, C., Chen, D.: Meshfree generalized finite difference methods in soil mechanics—part I: theory. GEM Int. J. Geomath. 4(2), 167–184 (2013)

    Article  MathSciNet  Google Scholar 

  23. Schaback, R.: Error analysis of nodal meshless methods. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VIII, pp. 117–143. Springer, Berlin (2017)

    Chapter  Google Scholar 

  24. Seibold, B.: M-Matrices in Meshless Finite Difference Methods. Dissertation, University of Kaiserslautern (2006)

  25. Seibold, B.: Minimal positive stencils in meshfree finite difference methods for the Poisson equation. Comput. Methods Appl. Mech. Eng. 198(3–4), 592–601 (2008)

    Article  MathSciNet  Google Scholar 

  26. Seibold, B.: Performance of algebraic multigrid methods for non-symmetric matrices arising in particle methods. Numer. Linear Algebra Appl. 17, 433–451 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer, New York (1973)

    Book  Google Scholar 

  28. Stewart, G.: Matrix Algorithms. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  29. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Davydov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, O., Schaback, R. Minimal numerical differentiation formulas. Numer. Math. 140, 555–592 (2018). https://doi.org/10.1007/s00211-018-0973-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0973-3

Mathematics Subject Classification

Navigation