Skip to main content
Log in

Nanostructure evolution studies of bulk polymer materials with synchrotron radiation: progress in method development

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The prospects of a modern analysis of nanostructure evolution during the processing of polymer materials by means of scattering from synchrotron radiation are demonstrated in examples. The beam sources have gained stability, shortages are located in beamline setups and in method development for the quantitative analysis of voluminous data sets.

By using the proposed multidimensional chord distribution function (CDF) analysis method, nanostructure information from small-angle X-ray scattering (SAXS) data are extracted and visualised. The method can be automated if the beamline setup is able to deliver a full data set with simple constraints. In this case even a simultaneous data evaluation is possible (while one pattern is accumulated, the previous one is analysed). The advantages of the method are demonstrated in a study of the straining of a thermoplastic elastomer. The possibilities of an automated analysis are demonstrated in an investigation of the crystallisation behaviour of high-pressure injection-moulded polyethylene (HPIM-PE). The achievable results of nanostructure analysis of polymer materials are discussed. It is shown that the time-resolved SAXS of polymer materials studied during a transformation and analysed by the CDF method is not just a powerful tool to investigate the relationship between structure and properties of materials; the information that can be gained concerning the processes that control nanostructure evolution is equally important. In the future the enlightenment of such relationships may help to tailor polymer materials with respect to their properties and, beyond that, to improve assessments concerning their aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Grosse-Kunstleve RW, Sauter NK, Moriarty NW, Adams PD (2002) J Appl Cryst 35:126

    Article  CAS  Google Scholar 

  2. Porod G (1951) Kolloid Z 124:83

    CAS  Google Scholar 

  3. Glatter O, Kratky O (1982) (eds) Small angle X-ray scattering. Academic Press, London

  4. Vonk CG, Kortleve G (1967) Kolloid Z u Z Polymere 220:19

    CAS  Google Scholar 

  5. Ruland W (1977) Colloid Polym Sci 255:417

    CAS  Google Scholar 

  6. Förster S, Burger C (1998) Macromolecules 31:879

    Article  Google Scholar 

  7. Glatter O (1979) J Appl Cryst 12:166

    Article  CAS  Google Scholar 

  8. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York

  9. Vonk CG (1979) Colloid Polym Sci 257:1021

    CAS  Google Scholar 

  10. Ruland W (1978) Colloid Polym Sci 256:932

    Google Scholar 

  11. Stribeck N (1993) Colloid Polym Sci 271:1007

    CAS  Google Scholar 

  12. Méring J, Tchoubar D (1968) J Appl Cryst 1:153

    Article  Google Scholar 

  13. Stribeck N (2001) J Appl Cryst 34:496

    Article  CAS  Google Scholar 

  14. Bonart R (1966) Kolloid Z u Z Polymere 211:14

    CAS  Google Scholar 

  15. Stribeck N (1992) Colloid Polym Sci 270:9

    CAS  Google Scholar 

  16. Stribeck N (1999) J Polym Sci Part B Polym Phys 37:975

    Article  CAS  Google Scholar 

  17. Stribeck N (2000) ACS Symp Ser 739:41

    CAS  Google Scholar 

  18. pv–wave Version 7.5 (2001) Visual Numerics, Boulder, Colorado

  19. Haberäcker P (1989) Digitale Bildverarbeitung. Hanser, Munich

  20. Rosenfeld A, Kak AC (1982) Digital picture processing, vol. 1. Academic Press, London

  21. Ruland W (1971) J Appl Cryst 4:70

    Article  Google Scholar 

  22. Stribeck N, Ruland W (1978) J Appl Cryst 11:535

    Article  CAS  Google Scholar 

  23. Fischer L, Haschberger R, Ziegeldorf A, Ruland W (1982) Colloid Polym Sci 260:174

    CAS  Google Scholar 

  24. Fiedel HW, Wenig W (1989) Colloid Polym Sci 267:369

    Google Scholar 

  25. Santa Cruz C, Stribeck N, Zachmann HG, Baltá Calleja FJ (1991) Macromolecules 24:5980

    CAS  Google Scholar 

  26. Stribeck N, Zachmann HG, Bayer RK, Baltá Calleja FJ (1997) J Mater Sci 32:1639

    Google Scholar 

  27. Wolff T, Burger C, Ruland W (1994) Macromolecules 27:3301

    CAS  Google Scholar 

  28. Stribeck N, Sapoundjieva D, Denchev Z, Apostolov AA, Zachmann HG, Stamm M, Fakirov S (1997) Macromolecules 30:1329

    Article  CAS  Google Scholar 

  29. Schmidtke J, Strobl G, Thurn-Albrecht T (1997) Macromolecules 30:5804

    Article  CAS  Google Scholar 

  30. Stribeck N, Reimers C, Ghioca P, Buzdugan E (1998) J Polym Sci Part B Polym Phys 36:1423

    Article  CAS  Google Scholar 

  31. Chen HL, Li LJ, Lin TL (1998) Macromolecules 31:2255

    Article  CAS  Google Scholar 

  32. Thünemann AF, Lochhaas KH (1998) Langmuir 14:6220

    Article  Google Scholar 

  33. Heck B, Hugel T, Iijima M, Sadiku E, Strobl G (1999) New J Phys 1:17.1

    Article  Google Scholar 

  34. Thünemann AF, Ruland W (2000) Macromolecules 33:2626

    Article  Google Scholar 

  35. Iijima M, Strobl G (2000) Macromolecules 33:5204

    Article  CAS  Google Scholar 

  36. Wutz C, Stribeck N, Gieseler D (2000) Coll Polym Sci 278:1061

    Article  CAS  Google Scholar 

  37. Heck B, Hugel T, Iijima M, Strobl G (2000) Polymer 41:8839

    Article  CAS  Google Scholar 

  38. Flores A, Pietkiewicz D, Stribeck N, Roslaniec Z, Baltá Calleja FJ (2001) Macromolecules 34:8094

    Article  CAS  Google Scholar 

  39. Fu Q, Heck B, Strobl G, Thomann Y (2001) Macromolecules 34:2502

    Article  CAS  Google Scholar 

  40. Hsiao BS, Verma RK (1998) J Synchrotron Radiat 5:23

    Article  CAS  Google Scholar 

  41. Stribeck N (2002) Colloid Polym Sci 280:254

    Article  CAS  Google Scholar 

  42. Fakirov S (1985) Bulg J Phys 2:173

    Google Scholar 

  43. Stribeck N (1997) Fibre Diffraction Rev 6:20

    Google Scholar 

  44. Fronk W, Wilke W (1985) Colloid Polym Sci 263:97

    CAS  Google Scholar 

  45. Buhmann MD (2000) Acta Numerica 9:1

    Article  Google Scholar 

  46. Wang J, Alvarez M, Zhang W, Wu Z, Li Y, Chu B (1992) Macromolecules 25:6943

    CAS  Google Scholar 

  47. Hsiao BS, Gardner KH, Wu DQ, Chu B (1993) Polymer 34:3996

    CAS  Google Scholar 

  48. Bassett DC, Olley RH, Al Raheil IAM (1988) Polymer 29:1745

    CAS  Google Scholar 

  49. Ruland W (1987) Macromolecules 20:87

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Stribeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stribeck, N. Nanostructure evolution studies of bulk polymer materials with synchrotron radiation: progress in method development. Anal Bioanal Chem 376, 608–617 (2003). https://doi.org/10.1007/s00216-003-1904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1904-3

Keywords

Navigation