Skip to main content
Log in

Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel amperometric nitrite sensor was developed based on the immobilization of hemoglobin/colloidal gold nanoparticles on a glassy carbon electrode by a titania sol-gel film. The sensor shows a pair of well-defined and nearly reversible cyclic voltammogram peaks for Hb Fe(III)/Fe(II) with a formal potential (E°′) of −0.370 V, and the peak-to-peak separation at 100 mV s−1 was 66 mV vs. Ag/AgCl (3.0 M KCl) in a pH 6.9 phosphate buffer solution. The formal potential of the Hb Fe(III)/Fe(II) couple shifted linearly with pH with a slope of −50.0 mV/pH, indicating that electron transfer accompanies single-proton transportation. The sensor exhibited an excellent electrocatalytic response to the reduction of nitrite. The reduction overpotential was 0.45 V below that obtained at a colloidal gold nanoparticles/TiO2 sol-gel film-modified GCE. The linear range for nitrite determination for the sensor was 4.0×10−6 to 3.5×10−4 M, with a detection limit of 1.2×10−6 M. The stability, repeatability and selectivity of the sensor were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–B
Fig. 4A–B
Fig. 5a–d
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Camp TR (1963) Water and its impurities. Reinhold Publishing, New York

  2. Metzler DE (1977) Biochemistry: the chemical reactions of living cells. Academic, New York

  3. Spãtaru N, Rao TN, Tryk DA, Fujishima A (2001) J Electrochem Soc 148:E112

    Google Scholar 

  4. Alonso A, Etxaniz B, Martinez MD (1992) Food Addit Contam 9:111

    Google Scholar 

  5. Ryuji N, Minoru T, Akihiko N, Keiko I (1990) Analyst 115:425

    Google Scholar 

  6. Iyengar R, Stuehr DJ, Marletta MA (1987) P Natl Acad Sci USA 84:6369

    Google Scholar 

  7. Wagner DA, Young VR, Tannenbaum SR (1983) P Natl Acad Sci USA 80:4518

    Google Scholar 

  8. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Anal Biochem 126:131

    Google Scholar 

  9. Cissy H, Clarke RT, Smith SM, Clinch JR, Worsfold PJ (1989) Anal Chim Acta 227:379

    Google Scholar 

  10. Chaube A, Baveja AK, Gupta VK (1984) Talanta 31:391

    Google Scholar 

  11. Chamsi AY, Fogg AG (1988) Analyst 113:1723

    Google Scholar 

  12. Pletcher D, Bertotti M, Braz J (1997) Chem Soc 8:391

    Google Scholar 

  13. Silva SM, Alves CR, Machado SAS, Mazo LH, Avaca LA (1996) Electroanalysis 8:1055

    Google Scholar 

  14. Guidelli R, Pergolo F, Raspi G (1972) Anal Chem 44:745

    Google Scholar 

  15. Granger MC, Xu JS, Strojek JW, Swain GM (1999) Anal Chim Acta 379:145

    Google Scholar 

  16. Xing X, Scherson DA (1988) Anal Chem 60:1468

    Google Scholar 

  17. Silva SM, Mazo LH (1998) Electroanalysis 10:1200

    Google Scholar 

  18. Sunohara S, Nishimura K, Yahikozawa K, Ueno M, Enyo M, Takasu Y (1993) J Electroanal Chem 354:161

    Google Scholar 

  19. Barisci JN, Wallace GG (1991) Anal Lett 24:2059

    Google Scholar 

  20. Rocha JRC, Angnes L, Bertotti M, Araki K, Toma HE (2002) Anal Chim Acta 452:23

    Google Scholar 

  21. Cox JA, Kulesza PJ (1984) J Electroanal Chem 397:105

    Google Scholar 

  22. Araki K, Angnes L, Azevedo CMN, Toma HE (1995) J Electroanal Chem 397:205

    Google Scholar 

  23. Malone MM, Doherty AP, Smith MR, Vos JG (1992) Analyst 117:1259

    Google Scholar 

  24. Strehlitz B, Grunding B, Schumacher W, Kronecck BMH, Vorlop KD, Kotte H (1996) Anal Chim Acta 68:807

    Google Scholar 

  25. Cheng L, Dong SJ (2000) J Electrochem Soc 147:606

    Google Scholar 

  26. Pei JH, Li XY (2000) Talanta 51:1107

    Google Scholar 

  27. Keita B, Belhouari A, Nadjo L, Contant R (1995) J Electroanal Chem 381:243

    Google Scholar 

  28. Liu SQ, Shi Z, Dong SJ (1998) Electroanalysis 10:891

    Google Scholar 

  29. Sun WL, Zhang S, Liu HZ, Jin LT, Kong JL (1999) Anal Chim Acta 388:103

    Google Scholar 

  30. Keita B, Mbomekalle IM, Nadjo L, Contant R (2001) Electrochem Commun 3:267

    Google Scholar 

  31. Wang P, Yuan Y, Han ZB, Zhu GY (2001) J Mater Chem 11:549

    Google Scholar 

  32. Wang XL, Wang EB, Lan Y, Hu CW (2002) Electroanalysis 14:1116

    Google Scholar 

  33. Wang SF, Du D (2003) Sensor Actuat B 94:282

    Google Scholar 

  34. He P, Hu NF, Zhang Y, Rusling JF (2002) Langmuir 18:8573

    Google Scholar 

  35. Chen X, Hu NF, Zeng Y, Rusling JF (1999) Langmuir 15:7022

    Google Scholar 

  36. He P, Hu NF, Zhou G (2002) Biomacromolecules 3:139

    Google Scholar 

  37. Yu JH, Ju HX (2002) Anal Chem 15:3579

    Google Scholar 

  38. Broun KR, Walter DG, Natan MJ (2000) Chem Mater 12:306

    Google Scholar 

  39. George P, Hanama G (1953) Biochem J 55:236

    Google Scholar 

  40. Gu HY, Yu AM, Chen HY (2001) J Electroanal Chem 516:119

    Google Scholar 

  41. Lei C, Wollenberger U, Bistolas N, Guiseppi-Elis A, Scheller FW (2002) Anal Bioanal Chem 372:235

    Google Scholar 

  42. Bedioui F, Trevin S, Albin V, Villegas MGG, Devynck J (1997) Anal Chim Acta 341:177

    Google Scholar 

  43. Liu SQ, Ju HX (2003) Analyst 128:1420

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program (G2000078102), Educational Ministry (20020183007), National Natural Science Foundation (20175007) of China, and Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Bai, Y., Li, Y. et al. Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film. Anal Bioanal Chem 382, 44–50 (2005). https://doi.org/10.1007/s00216-005-3160-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3160-1

Keywords

Navigation