Skip to main content
Log in

Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new DNA hybridization analytical method using a microfluidic channel and a molecular beacon-based probe (MB-probe) is described. A stem-loop DNA oligonucleotide labeled with two fluorophores at the 5′ and 3′ termini (a donor dye, TET, and an acceptor dye, TAMRA, respectively) was used to carry out a fast and sensitive DNA analysis. The MB-probe utilized the specificity and selectivity of the DNA hairpin-type probe DNA to detect a specific target DNA of interest. The quenching of the fluorescence resonance energy transfer (FRET) signal between the two fluorophores, caused by the sequence-specific hybridization of the MB-probe and the target DNA, was used to detect a DNA hybridization reaction in a poly(dimethylsiloxane) (PDMS) microfluidic channel. The azoospermia gene, DYS 209, was used as the target DNA to demonstrate the applicability of the method. A simple syringe pumping system was used for quick and accurate analysis. The laminar flow along the channel could be easily controlled by the 3-D channel structure and flow speed. By injecting the MB-probe and target DNA solutions into a zigzag-shaped PDMS microfluidic channel, it was possible to detect their sequence-specific hybridization. Surface-enhanced Raman spectroscopy (SERS) was also used to provide complementary evidence of the DNA hybridization. Our data show that this technique is a promising real-time detection method for label-free DNA targets in the solution phase.

FRET-based DNA hybridization detection using a molecular beacon in a zigzag-shaped PDMS microfluidic channel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b
Fig. 4
Fig. 5
Fig. 6a–c

Similar content being viewed by others

References

  1. Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) Nat Genet 21S:20

    Article  Google Scholar 

  2. Van’t Veer LJ, Dai HY, van Vijver MJ, He YDD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernals R, Friend SH (2002) Nature 415:530

    Article  Google Scholar 

  3. Furlong EEM, Anderson EC, Null B, White KP, Scott MP (2001) Science 293:1629

    Article  CAS  Google Scholar 

  4. Peterson AW, Heaton RJ, Georgiadis R (2000) J Am Chem Soc 122:7837

    Google Scholar 

  5. Jobs M, Fredriksson S, Brookes AJ, Landegren U (2002) Anal Chem 74:199

    Article  CAS  Google Scholar 

  6. Meldrum DR, Holl MR (2002) Science 297:1197

    Article  CAS  Google Scholar 

  7. Schilling EA, Kamholz AE, Yager P (2002) Anal Chem 74:1798

    Article  CAS  Google Scholar 

  8. Yea KH, Lee S, Choo J, Oh CH, Lee S (2006) Chem Commun 1509

  9. Park T, Lee S, Seong GH, Choo J, Lee EK, Kim YS, Ji WH, Hwang SY, Gweon DG, Lee S (2005) Lab Chip 5:437

    Article  CAS  Google Scholar 

  10. Heule M, Manz A (2004) Lab Chip 4:506

    Article  CAS  Google Scholar 

  11. Yamashita K, Yamaguchi Y, Miyazaki M, Nakamura H, Shimizu H, Maeda H (2004) Lab Chip 4:1

    Article  CAS  Google Scholar 

  12. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Anal Chem 74:2637

    Article  CAS  Google Scholar 

  13. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Anal Chem 74:2623

    Article  CAS  Google Scholar 

  14. Weigl BH, Yager P (1999) Science 283:346

    Article  Google Scholar 

  15. Kenis PJA, Ismagilov RF, Whitesides GM (1999) Science 285:83

    Article  CAS  Google Scholar 

  16. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Phys Rev Lett 80:3863

    Article  CAS  Google Scholar 

  17. Wabuyele MB, Farquar H, Stryjewski W, Hammer RP, Soper SA, Cheng YW, Barany F (2003) J Am Chem Soc 125:6937

    Google Scholar 

  18. Xi C, Raskin L, Boppart SA (2005) Biomed Microdev 7:7

    Article  CAS  Google Scholar 

  19. Goel G, Kumar A, Puniya AK, Chen W, Singh K (2005) J Appl Microbiol 99:435

    Article  CAS  Google Scholar 

  20. Tan L, Li Y, Drake TJ, Moroz L, Wang K, Li J, Munteanu A, Yang CJ, Martinez K, Tan W (2005) Analyst 130:1002

    Article  CAS  Google Scholar 

  21. Tyagi S, Kramer FR (1996) Nat Biotechnol 14:303

    Article  CAS  Google Scholar 

  22. Tyagi S, Bratu DP, Kramer FR (1998) Nat Biotechnol 16:49

    Article  CAS  Google Scholar 

  23. Dubertret B, Calame M, Libchaber AJ (2001) Nat Biotechnol 19:365

    Article  CAS  Google Scholar 

  24. Faulds K, Fruk L, Robson DC, Thompson DG, Enright A, Smith WE, Graham D (2006) Faraday Discuss 132:261

    Article  CAS  Google Scholar 

  25. Raicu F, Popa L, Apostol P, Cimponeriu D, Dan L, Ilinca E, Dracea LL, Marinescu B, Gavrila LJ (2003) Cell Mol Med 7:43

    Article  CAS  Google Scholar 

  26. Kim DJ, Oh HJ, Park TH, Choo J, Lee SH (2005) Analyst 130:293

    Article  CAS  Google Scholar 

  27. Jung JH, Choo J, Kim DJ, Lee SH (2006) Bull Kor Chem Soc 27:277

    Article  CAS  Google Scholar 

  28. Lee PC, Miesel D (1982) J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  29. Faulds K, Smith WE, Graham D (2004) Anal Chem 76:412

    Article  CAS  Google Scholar 

  30. Yea KH, Lee SY, Kyong JB, Choo J, Lee EK, Joo SW, Lee SH (2005) Analyst 130:1009

    Article  CAS  Google Scholar 

  31. Lee DH, Lee SY, Seong GH, Choo J, Lee EK, Gweon DG, Lee SH (2006) Appl Spectrosc 60:373

    Article  Google Scholar 

  32. Wabuyele MB, Vo-Dinh T (2005) Anal Chem 77:7810

    Article  CAS  Google Scholar 

  33. Yonzon CR, Haynes CL, Zhang X, Walsh JT Jr, Van Duyne RP (2004) Anal Chem 76:78

    Article  CAS  Google Scholar 

  34. Chulha M, Stokes D, Allain LR, Vo-Dinh T (2003) Anal Chem 75:6196

    Article  CAS  Google Scholar 

  35. Lee M, Lee J, Rhee H, Choo J, Chai YG, Lee EK (2003) J Raman Spectrosc 34:737

    Article  CAS  Google Scholar 

  36. Chan S, Kwon S, Koo TW, Lee LP, Berlin AA (2003) Adv Mater 15:1595

    Article  CAS  Google Scholar 

  37. Doering WE, Nie S (2003) Anal Chem 75:6171

    Article  CAS  Google Scholar 

  38. Mulvancy SP, Musik MD, Keating CD, Natan MJ (2003) Langmuir 19:4784

    Article  CAS  Google Scholar 

  39. Jana NR (2003) Analyst 128:954

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation (Grant number R14-2002-004-01000). J.C. also thanks the National Cancer Center of Korea (Grant number 0620400-1), the Seoul Research and Business Development Program (Grant number 10574), and the Korea Science and Engineering Foundation (Grant number 2006-02368) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaebum Choo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Chen, L., Lee, S. et al. Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel. Anal Bioanal Chem 387, 2609–2615 (2007). https://doi.org/10.1007/s00216-007-1158-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1158-6

Keywords

Navigation