Skip to main content
Log in

Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A chemical prototype sensor was constructed based on nanofiber-structured TiO2 and highly sensitive quartz resonators. The gas-sensing behavior of this new sensor to selected simulant warfare agents was investigated at room temperature. Results showed rapid response and good reversibility of this sensor when used with high-purity nitrogen. This provides a simple approach to preparation of materials needed as chemical sensors for selected organic volatiles or warfare agents.

Sensing behavior of TiO2 nanofiber sensor to chemical vapors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pushkarsky MB, Webber ME, Macdonald T, Patel CKN (2006) Appl Phys Lett 88:044103

    Article  Google Scholar 

  2. Kanu AB, Haigh PE, Hill HH (2005) Anal Chim Acta 553:148

    Article  CAS  Google Scholar 

  3. Simonian AL, Good TA, Wang SS, Wild JR (2005) Anal Chim Acta 534:69

    Article  CAS  Google Scholar 

  4. Gooding JJ (2006) Anal Chim Acta 559:137

    Article  CAS  Google Scholar 

  5. Mlsna TE, Cemalovic S, Warburton M, Hobson ST, Mlsna DA, Patel SV (2006) Sens Actuators B 116:192

    Article  Google Scholar 

  6. Virji S, Huang JX, Kaner RB, Weiller BH (2004) Nano Lett 4:491

    Article  CAS  Google Scholar 

  7. Huang JX, Virji S, Weiller BH, Kaner RB (2004) Chem Eur J 10:1314

    Article  CAS  Google Scholar 

  8. Ram MK, Yavuz O, Aldissi M (2005) Synth Met 151:77

    Article  CAS  Google Scholar 

  9. Aronova MA, Chang KS, Takeuchi I (2003) Appl Phys Lett 83:1255

    Article  CAS  Google Scholar 

  10. Comini E, Faglia G, Sberveglieri G (2002) Appl Phys Lett 81:1869

    Article  CAS  Google Scholar 

  11. Khanna A, Kumar R, Bhatti SS (2003) Appl Phys Lett 82:4388

    Article  CAS  Google Scholar 

  12. Lee DS, Kim YT, Huh JS, Lee DD (2002) Thin Solid Films 416:271

    Article  CAS  Google Scholar 

  13. Guidi V, Butturi MA, Carotta MC, Cavicchi B, Ferroni M, Malagu C, Martinelli G, Vincenzi D, Sacerdoti M, Zen M (2002) Sens Actuators B 84:72

    Article  Google Scholar 

  14. Chopra S, Pham A (2002) Appl Phys Lett 80:4632

    Article  CAS  Google Scholar 

  15. Modi A, Koratkar N, Lass E, Wei BQ, Ajayan PM (2003) Nature 424:171

    Article  CAS  Google Scholar 

  16. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Science 287:622

    Article  CAS  Google Scholar 

  17. Valentini L, Armentano I, Kenny JM (2003) Appl Phys Lett 82:961

    Article  CAS  Google Scholar 

  18. Chopra S, McGuire K, Gothard N, Rao AM, Pham A (2003) Appl Phys Lett 83:2280

    Article  CAS  Google Scholar 

  19. Matsuguchi M, Io J, Sugiyama G, Sakai Y (2002) Synth Met 128:15

    Article  CAS  Google Scholar 

  20. Riul A, Gallardo Soto AM, Mello SV, Bone S, Taylor DM, Mattoso LHC (2003) Synth Met 132:109

    Article  CAS  Google Scholar 

  21. Chabukswar VV, Pethkar S, Athawale AA (2001) Sens Actuators B 77:657

    Article  Google Scholar 

  22. Albertini VR, Generosi A, Paci B, Perfetti P, Rossi G, Capobianchi A, Paoletti AM, Caminiti R (2003) Appl Phys Lett 82:3868

    Article  Google Scholar 

  23. Miyata T, Kawaguchi S, Ishii M, Minami T (2003) Thin Solid Films 425:255

    Article  CAS  Google Scholar 

  24. van Faassen E, Kerp H (2004) Sens Actuators B 88:329

    Google Scholar 

  25. Rakow NA, Suslick KS (2000) Nature 406:710

    Article  CAS  Google Scholar 

  26. Wei A, Sun XW, Xu CX, Dong ZL, Yang Y, Tan ST, Huang W (2006) Nanotechnology 17:1740

    Article  CAS  Google Scholar 

  27. Yu HD, Zhang ZP, Han MY, Hao XT, Zhu FR (2005) J Am Chem Soc 127:2378

    Article  CAS  Google Scholar 

  28. Liu B, Zeng HC (2003) J Am Chem Soc 125:4430

    Article  CAS  Google Scholar 

  29. Wang Z, Qian XF, Yin J, Zhu ZK (2004) Langmuir 20:3441

    Article  CAS  Google Scholar 

  30. Huang JX, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314

    Article  CAS  Google Scholar 

  31. Virji S, Huang JX, Kaner RB, Weiller BH (2004) Nano Lett 4:491

    Article  CAS  Google Scholar 

  32. Ma XF, Li G, Wang M, Cheng YN, Bai R, Chen HZ (2006) Chem Eur J 12:3254

    Article  CAS  Google Scholar 

  33. Zhang LJ, Long YZ, Chen ZJ, Wan MX (2004) Adv Funct Mater 14:693

    Article  CAS  Google Scholar 

  34. Huang JX, Kaner RB (2004) J Am Chem Soc 126:851

    Article  CAS  Google Scholar 

  35. Zhang XY, Manohar SK (2004) J Am Chem Soc 126:4502

    Article  CAS  Google Scholar 

  36. Huang JX, Kaner RB (2004) Angew Chem Int Edit 43:5817

    Article  CAS  Google Scholar 

  37. Ma XF, Zhang XB, Li Y, Li G, Wang M, Chen HZ, Mi YH (2006) Macromol Mater Eng 291:75

    Article  CAS  Google Scholar 

  38. Ma XF, Wang M, Li G, Chen HZ, Bai R (2006) Mater Chem Phys 98:241

    Article  CAS  Google Scholar 

  39. Schnitzler DC, Meruvia MS, Hummelgen IA, Zarbin AJG (2003) Chem Mater 15:4658

    Article  CAS  Google Scholar 

  40. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH (2000) Adv Mater 12:522

    Article  CAS  Google Scholar 

  41. Zengin H, Zhou WS, Jin JY, Czerw R, Smith DW, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Adv Mater 14:1480

    Article  CAS  Google Scholar 

  42. Sotzing GA, Phend JN, Grubbs RH, Lewis NS (2000) Chem Mater 12:593

    Article  CAS  Google Scholar 

  43. An KH, Jeong SY, Hwang HR, Lee YH (2004) Adv Mater 16:1005

    Article  CAS  Google Scholar 

  44. Li SP, Qin YJ, Shi JH, Guo ZX, Yongfang L, Zhu DB (2005) Chem Mater 17:130

    Article  CAS  Google Scholar 

  45. Wei MD, Konishi Y, Zhou HS, Yanagida M, Sugihara H, Arakawa H (2006) J Mater Chem 16:1287

    Article  CAS  Google Scholar 

  46. Huang FZ, Zhou MF, Cheng YB, Caruso RA (2006) Chem Mater 18:5835

    Article  CAS  Google Scholar 

  47. Zuruzi AS, Kolmakov A, MacDonald NC, Moskovits M (2006) Appl Phys Lett 88:102904

    Article  Google Scholar 

  48. Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Thin Solid Films 496:42

    Article  CAS  Google Scholar 

  49. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL (2006) Nano Lett 6:2009

    Article  CAS  Google Scholar 

  50. Ma XF, Sun JZ, Wang M, Li G, Chen HZ, Huang J (2006) Sens Actuators B 114:1035

    Article  Google Scholar 

  51. Ma XF, Chen HZ, Shi MM, Wu G, Wang M, Huang J (2005) Thin Solid Films 489:257

    Article  CAS  Google Scholar 

  52. Ma XF, Xu Hz, Li G, Wang M, Chen HZ, Chen Song (2006) Macromol Mater Eng 291:1539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfa Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Zhu, T., Xu, H. et al. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents. Anal Bioanal Chem 390, 1133–1137 (2008). https://doi.org/10.1007/s00216-007-1766-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1766-1

Keywords

Navigation