Skip to main content
Log in

Inorganic mass spectrometry as a tool for characterisation at the nanoscale

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Inorganic mass spectrometry techniques may offer great potential for the characterisation at the nanoscale, because they provide unique elemental information of great value for a better understanding of processes occurring at nanometre-length dimensions. Two main groups of techniques are reviewed: those allowing direct solid analysis with spatial resolution capabilities, i.e. lateral (imaging) and/or in-depth profile, and those for the analysis of liquids containing colloids. In this context, the present capabilities of widespread elemental mass spectrometry techniques such as laser ablation coupled with inductively coupled plasma mass spectrometry (ICP-MS), glow discharge mass spectrometry and secondary ion/neutral mass spectrometry are described and compared through selected examples from various scientific fields. On the other hand, approaches for the characterisation (i.e. size, composition, presence of impurities, etc.) of colloidal solutions containing nanoparticles by the well-established ICP-MS technique are described. In this latter case, the capabilities derived from the on-line coupling of separation techniques such as field-flow fractionation and liquid chromatography with ICP-MS are also assessed. Finally, appealing trends using ICP-MS for bioassays with biomolecules labelled with nanoparticles are delineated.

Inorganic mass spectrometry: an emerging tool for nanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Norris JL, Cornett DS, Mobley JA, Andersson M, Seeley EH, Chaurand P, Caprioli RM (2007) Int J Mass Spectrom 260:212–221

    CAS  Google Scholar 

  2. Mas S, Perez R, Martinez-Pinna R, Egido J, Vivanco F (2008) Proteomics 8:3735–3745

    CAS  Google Scholar 

  3. Becker JS, Zoriy M, Wu B, Matusch A, Becker JS (2008) J Anal At Spectrom 23:1275–1280

    CAS  Google Scholar 

  4. Pisonero J, Günther D (2008) Mass Spectrom Rev 27:609–623

    CAS  Google Scholar 

  5. Hoffmann V, Kasik M, Robinson PK, Venzago C (2005) Anal Bioanal Chem 381:173–188

    CAS  Google Scholar 

  6. Nygren H, Malmberg P (2007) Trends Biotechnol 25:499–504

    CAS  Google Scholar 

  7. Touboul D, Halgand F, Brunelle A, Kersting R, Tallarek E, Hagenhoff B, Laprevote O (2004) Anal Chem 76:1550–1559

    CAS  Google Scholar 

  8. Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV (2007) Anal Chem 79:6074–6080

    CAS  Google Scholar 

  9. Becker JS, Zoriy M, Becker JS, Dobrowolska J, Matusch A (2007) J Anal At Spectrom 22:736–744

    CAS  Google Scholar 

  10. Hwang DJ, Grigoropoulos CP, Yoo J, Russo RE (2006) Appl Phys Lett 89:254101

    Google Scholar 

  11. Bubert H, Jenett H (2002) Surface and thin film analysis. Wiley-VCH, Weinheim

    Google Scholar 

  12. Barshik CM, Duckworth DC, Smith DH (2000) Inorganic mass spectrometry. Wiley, New York

    Google Scholar 

  13. Becker JS (2008) Inorganic mass spectrometry: principles and applications. Wiley, New York

    Google Scholar 

  14. Betti M (2005) Int J Mass Spectrom 242:169–182

    CAS  Google Scholar 

  15. Fernández B, Claverie F, Pecheyran C, Donard OFX (2007) Trends Anal Chem 26:951–966

    Google Scholar 

  16. Gray AL (1985) Analyst 110:551–556

    CAS  Google Scholar 

  17. Horlick G, Montaser A (1998) In: Montaser A (ed) Inductively coupled plasma mass spectrometry. Wiley-VCH, New York, pp 543–547

    Google Scholar 

  18. Becker JS (2002) Spectrochim Acta Part B 57:1805–1820

    Google Scholar 

  19. Durrant SF (1999) J Anal At Spectrom 14:1385–1403

    CAS  Google Scholar 

  20. Hattendorf B, Latkoczy C, Günther D (2003) Anal Chem 75:341A–347A

    Google Scholar 

  21. Günther D, Hattendorf B (2005) Trends Anal Chem 24:255–265

    Google Scholar 

  22. Guillong M, Günther D (2002) J Anal At Spectrom 17:831–837

    CAS  Google Scholar 

  23. Koch J, Günther D (2007) Anal Bioanal Chem 387:149–153

    CAS  Google Scholar 

  24. Kroslakova I, Günther D (2007) J Anal At Spectrom 22:51–62

    CAS  Google Scholar 

  25. Garcia CC, Lindner H, von Bohlen A, Vadla C, Niemax K (2008) J Anal At Spectrom 23:470–478

    CAS  Google Scholar 

  26. Garcia CC, Lindner H, Niemax K (2009) J Anal At Spectrom 24:14–26

    CAS  Google Scholar 

  27. Hergenröder R, Samek O, Hommes V (2006) Mass Spectrom Rev 25:551–572

    Google Scholar 

  28. Margetic V, Bolshov M, Stockhaus A, Niemax K, Hergenröder R (2001) J Anal At Spectrom 16:616–621

    CAS  Google Scholar 

  29. Margetic V, Niemax K, Hergenröder R (2003) Anal Chem 75:3435–3439

    CAS  Google Scholar 

  30. Pisonero J, Koch J, Wälle M, Hartung W, Spencer ND, Günther D (2007) Anal Chem 79:2325–2333

    CAS  Google Scholar 

  31. Mateo MP, Garcia CC, Hergenröder R (2007) Anal Chem 79:4908–4914

    CAS  Google Scholar 

  32. Stöckle R, Setz P, Deckert V, Lippert T, Wokaun A, Zenobi R (2001) Anal Chem 73:1399–1402

    Google Scholar 

  33. Wen S-B, Greif R, Russo RE (2007) Appl Phys Lett 91:251113

    Google Scholar 

  34. Hwang DJ, Jeon H, Grigoropoulos CP, Yoo J, Russo RE (2008) J Appl Phys 104:013110

    Google Scholar 

  35. Becker JS, Gorbunoff A, Zoriy M, Izmer A, Kayser M (2006) J Anal At Spectrom 21:19–25

    CAS  Google Scholar 

  36. Zoriy M, Kayser M, Becker J (2008) Int J Mass Spectrom 273:151–155

    CAS  Google Scholar 

  37. Borisova AY, Freydier R, Polvé M, Salvi S, Candaudap F, Aigouy T (2008) Geostand Geoanal Res 32:209–229

    CAS  Google Scholar 

  38. Halter WE, Pettke T, Heinrich CA (2004) Contrib Mineral Petrol 147:385–396

    CAS  Google Scholar 

  39. Horvath M, Guillong M, Izmer A, Kivel N, Restani R, Günther-Leopold I, Opitz Coutureau J, Hellwig C, Günther D (2007) J Anal At Spectrom 22:1266–1274

    CAS  Google Scholar 

  40. Becker JS, Sela H, Dobrowolska J, Zoriy M, Becker JS (2008) Int J Mass Spectrom 270:1–7

    CAS  Google Scholar 

  41. Gligorovski S, Van Elteren JT, Grgic I (2008) Sci Total Environ 407:594–602

    CAS  Google Scholar 

  42. Wu B, Zoriy M, Chen Y, Becker JS (2009) Talanta 78:132–137

    CAS  Google Scholar 

  43. Dobrowolska J, Dehnhardt M, Matusch A, Zoriy M, Palomero-Gallagher N, Koscielniak P, Zilles K, Becker JS (2008) Talanta 74:717–723

    CAS  Google Scholar 

  44. Becker JS, Dietrich RC, Matusch A, Pozebon D, Dressler VL (2008) Spectrochim Acta Part B 63:1248–1252

    Google Scholar 

  45. Wu B, Chen Y, Becker JS (2009) Anal Chim Acta 633:165–172

    CAS  Google Scholar 

  46. Pisonero J, Fernández B, Pereiro R, Bordel N, Sanz-Medel A (2006) Trends Anal Chem 25:11–18

    CAS  Google Scholar 

  47. Winchester R, Payling R (2004) Spectrochim Acta Part B 59:607–666

    Google Scholar 

  48. Nelis T, Aeberhard M, Hohl M, Rohr L, Michler J (2006) J Anal At Spectrom 21:112–125

    CAS  Google Scholar 

  49. Martín A, Pereiro R, Bordel N, Sanz-Medel A (2007) J Anal At Spectrom 22:1179–1183

    Google Scholar 

  50. Steiner RE, Lewis CL, King F (1997) Anal Chem 69:1715–1721

    CAS  Google Scholar 

  51. Yang C, Ingenieri K, Mohill M, Harrison WW (2000) J Anal At Spectrom 15:73–78

    CAS  Google Scholar 

  52. Gendt S, Van Greiken RE, Ohorodnik SK, Harrison WW (1996) Anal Chem 67:1026–1033

    Google Scholar 

  53. Vazquez M, Pisonero J, Costa JM, Pereiro R, Bordel N, Sanz-Medel A (2003) J Anal At Spectrom 18:612–617

    Google Scholar 

  54. Pisonero J (2006) Anal Bioanal Chem 384:47–49

    CAS  Google Scholar 

  55. Nelis T (2006) Appl Spectros Rev 41:227–258

    CAS  Google Scholar 

  56. Hoffmann V, Dorka R, Wilken L, Hodoroaba V, Wetzig K (2003) Surf Interface Anal 35:575–582

    CAS  Google Scholar 

  57. Shimizu K, Payling R, Habazaki H, Skeldon P, Thompson GE (2004) J Anal At Spectrom 19:692–695

    CAS  Google Scholar 

  58. Lewis CL, Moser MA, Dale DE, Hang W, Hassell C, King FL, Majidi V (2003) Anal Chem 75:1983–1996

    CAS  Google Scholar 

  59. Fliegel D, Waddell R, Majidi V, Günther D, Lewis CL (2005) Anal Chem 77:1847–1852

    CAS  Google Scholar 

  60. Muñiz AC, Pisonero J, Lobo L, Gonzalez C, Bordel N, Pereiro R, Tempez A, Chapon P, Tuccitto N, Licciardello A, Sanz-Medel A (2008) J Anal At Spectrom 23:1239–1246

    Google Scholar 

  61. Hohl M, Kanzari A, Michler J, Nelis T, Fuhrer K, Gonin M (2006) Surf Interface Anal 38:292–295

    CAS  Google Scholar 

  62. Tuccitto N, Lobo L, Tempez A, Delfanti I, Chapon P, Canulescu S, Bordel N, Michler J, Licciardello A (2009) Rapid Commun Mass Spectrom 23:549–556

    CAS  Google Scholar 

  63. Canulescu S, Whitby J, Fuhrer K, Hohl M, Gonin M, Horvart T, Michler J (2009) J Anal At Spectrom 24:178–180

    CAS  Google Scholar 

  64. Lewis C, Doorn SK, Wayne DM, King FL (2000) Appl Spectrosc 54:1236–1244

    CAS  Google Scholar 

  65. Naeem TM, Matsuta H, Wagatsuma K (2004) Anal Sci 20:1717–1720

    CAS  Google Scholar 

  66. Tarik M, Lotito G, Whitby JA, Koch J, Fuhrer K, Gonin M, Michler J, Bolli JL, Günther D (2009) Spectrochim Acta Part B 64:262–270

    Google Scholar 

  67. Shelley JT, Ray SJ, Hieftje GM (2008) Anal Chem 80:8308–8313

    CAS  Google Scholar 

  68. Benninghoven A, Rüdenauer FG, Werner HW (1987) Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends. Wiley, New York

    Google Scholar 

  69. Vickerman JC (1998) Surface analysis—the principal techniques. Wiley, Chichester

    Google Scholar 

  70. Walker AV (2008) Anal Chem 80:8865–8870

    CAS  Google Scholar 

  71. Nygren H, Malmberg P, Kriegeskotte C, Arlinghaus HF (2004) FEBS Lett 566:291–293

    CAS  Google Scholar 

  72. Benninghoven A (1994) Angew Chem 33:1023–1043

    Google Scholar 

  73. Aoyagi S (2009) Surf Interface Anal 41:136–142

    CAS  Google Scholar 

  74. Anderson O, Sheumann V, Rothlaar U, Rupertus V (2004) Glass Sci Technol 77:159–165

    CAS  Google Scholar 

  75. Jones EA, Lockyer NP, Vickerman JC (2008) Anal Chem 80:2125–2132

    CAS  Google Scholar 

  76. Arlinghaus HF, Kriegeskotte C, Fartmann M, Wittig A, Sauerwein W, Lipinsky D (2006) Appl Surf Sci 252:6941–6948

    CAS  Google Scholar 

  77. Chandra S (2008) Appl Surf Sci 255:1273–1284

    CAS  Google Scholar 

  78. Heeren RMA, Kükrer-Kaletas B, Taban IM, MacAleese L, McDonnell (2008) Appl Surf Sci 255:1289–1297

    Google Scholar 

  79. Graf N, Gross T, Wirth T, Weigel W, Unger WES (2009) Anal Bioanal Chem 393:1907–1912

    CAS  Google Scholar 

  80. Barnes JP, Carreau V, Maitrejean S (2008) Appl Surf Sci 255:1564–1568

    CAS  Google Scholar 

  81. Nojima M, Toi M, Maekawa A, Tomiyasu B, Sakamoto T, Owari M, Nihei Y (2004) Appl Surf Sci 231:930–935

    Google Scholar 

  82. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Biochim Biophys Acta 1724:228–238

    CAS  Google Scholar 

  83. Besmehn A, Hoppe P (2003) Geochim Cosmochim Acta 67:4693–4703

    CAS  Google Scholar 

  84. Audinot JN, Schneider S, Yegles M, Hallegot P, Wenning R, Migeon HN (2004) Appl Surf Sci 231:490–496

    Google Scholar 

  85. Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patiño C (2006) J Struct Biol 153:42–54

    CAS  Google Scholar 

  86. Nakata Y, Honda Y, Ninomiya S, Seki T, Auki T, Matsuo J (2009) J Mass Spectrom 44:128–136

    CAS  Google Scholar 

  87. Mikuba R, Hassaballa S, Uchino K, Yurimoto H, Todokoro R, Kumondai K, Ishihara M (2008) Appl Surf Sci 255:1595–1598

    Google Scholar 

  88. Fartmann M, Dambach S, Kriegeskotte C, Lipinsky D, Wiesmann HP, Wittig A, Sauerwein W, Arlinghaus HF (2003) Appl Surf Sci 203:726–729

    Google Scholar 

  89. Fartmann M, Kriegeskotte C, Dambach S, Wittig A, Sauerwein W, Arlinghaus HF (2004) Appl Surf Sci 231:428–431

    Google Scholar 

  90. Arlinghaus HF, Fartmann M, Kriegeskotte C, Dambach S, Wittig A, Sauerwein W, Lipinsky D (2004) Surf Interface Anal 36:698–701

    CAS  Google Scholar 

  91. Kriegeskotte C, Möller J, Lipinsky D, Wittig A, Sauerwein W, Haier J, Arlinghaus HF (2006) Surf Interface Anal 38:121–125

    CAS  Google Scholar 

  92. Wittig A, Arlinghaus HF, Kriegeskotte C, Moss RL, Appelman K, Schmid KW, Sauerwein WAG (2008) Mol Cancer Ther 7:1763–1771

    CAS  Google Scholar 

  93. Konarski P, Kaczorek K, Cwil M, Marks J (2008) Vacuum 82:1133–1136

    CAS  Google Scholar 

  94. Kirchner U, Vogt R, Natzeck C, Goschnick J (2003) Aerosol Sci 34:1323–1346

    CAS  Google Scholar 

  95. Pinnick V, Rajagopalachary S, Verkhoturov SV, Kaledin L, Schweikert EA (2008) Anal Chem 80:9052–9057

    CAS  Google Scholar 

  96. Goschnick J, Natzeck C, Sommer M, Zudock F (1998) Thin Solid Films 332:215–219

    CAS  Google Scholar 

  97. Hodoroaba V, Unger WES, Jenett H, Hoffmann V, Hagenhoff B, Kayser S, Wetzig K (2001) Appl Surf Sci 179:30–37

    CAS  Google Scholar 

  98. Kothleitner G, Rogers M, Berendes A, Bock W, Kolbesen BO (2005) Appl Surf Sci 252:66–76

    CAS  Google Scholar 

  99. Schneider T, Sommer M, Goschnick J (2005) Appl Surf Sci 252:257–260

    CAS  Google Scholar 

  100. Katona GL, Berenyi Z, Peter L, Vad K (2008) Vacuum 82:270–273

    Google Scholar 

  101. Escobar R, Gago R, Lousa A, Albella JM (2009) Trends Anal Chem 28:494–505

    Google Scholar 

  102. Thomas R (2002) Spectroscopy 17:26–33

    CAS  Google Scholar 

  103. Ammann AA (2007) J Mass Spectrom 42:419–427

    CAS  Google Scholar 

  104. Sanz-Medel A, Montes-Bayon M, Fernandez de la Campa MR, Ruiz-Encinar J, Bettmer J (2008) Anal Bioanal Chem 390:3–16

    CAS  Google Scholar 

  105. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 119:7019–7029

    CAS  Google Scholar 

  106. Bang JH, Suh WH, Suslik KS (2008) Chem Mater 20:4033–4038

    CAS  Google Scholar 

  107. Degueldre C, Favarger PY, Wold S (2006) Anal Chim Acta 555:263–268

    CAS  Google Scholar 

  108. Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins JC, Allan G, Hens Z (2007) Chem Mater 19:6101–6106

    CAS  Google Scholar 

  109. Montoro Bustos AR, Ruiz Encinar J, Fernández-Argüelles MT, Costa JM, Sanz-Medel A (2009) Chem Commun . doi:10.1039/b901493d

    Google Scholar 

  110. Calero-DdelC VL, Rinaldi C (2007) J Magn Magn Mater 314:60–67

    CAS  Google Scholar 

  111. Sonavanea G, Tomoda K, Makinoa K (2008) Colloids Surf B Biointerfaces 66:274–280

    Google Scholar 

  112. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Biomaterials 29:1912–1919

    Google Scholar 

  113. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Wanc Z, Xi T (2008) Appl Surf Sci 255:502–504

    CAS  Google Scholar 

  114. Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, Shi X, Yuan H, Zhang C, Liu R, Zhao F, Zhao Y, Fang X (2008) Toxicol Appl Pharmacol 230:364–371

    CAS  Google Scholar 

  115. Tanner SD, Baranov VI, Bandura DR (2002) Spectrochim Acta Part B 57:1361–1452

    Google Scholar 

  116. Baranov VI, Quinn ZA, Bandura DR, Tanner SD (2002) Anal Chem 74:1629–1636

    CAS  Google Scholar 

  117. Zhang C, Zhang ZY, Yu BB, Shi JJ, Zhang XR (2002) Anal Chem 74:96–99

    CAS  Google Scholar 

  118. Quinn ZA, Baranov VI, Tanner SD, Wrana JL (2002) J Anal At Spectrom 17:892–896

    CAS  Google Scholar 

  119. Merkoci A, Aldavert M, Tarrason G, Eritja R, Alegret S (2005) Anal Chem 77:6500–6503

    CAS  Google Scholar 

  120. Schmid G (2003) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  121. Alivisatos AP (1996) Science 271:933–937

    CAS  Google Scholar 

  122. Aryal S, Remant BKC, Dharmaraj N, Bhattarai N, Kim CH, Kim HY (2006) Spectrochim Acta Part A 63:160

    Google Scholar 

  123. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Anal Chim Acta 635:132–143

    CAS  Google Scholar 

  124. Reschiglian P, Zattoni A, Roda B, Michelini E, Roda A (2005) Trends Biotechnol 23:475–483

    CAS  Google Scholar 

  125. Rameshwar T, Samal S, Lee S, Kim S, Cho J, Kim IS (2006) J Nanosci Nanotechnol 6:2461–2467

    CAS  Google Scholar 

  126. Contado C, Pagnoni A (2008) Anal Chem 80:7594–7608

    CAS  Google Scholar 

  127. Siripinyanond A, Barnes RM (2002) Spectrochim Acta Part B 57:1885–1896

    Google Scholar 

  128. Bouby M, Geckeis H, Geyer FW (2008) Anal Bioanal Chem 392:1447–1457

    CAS  Google Scholar 

  129. Krueger KM, Al-Somali AM, Falkner JC, Colvin VL (2005) Anal Chem 77:3511–3515

    CAS  Google Scholar 

  130. Helfrich A, Bruchert W, Bettmer J (2006) J Anal At Spectrom 21:431–434

    CAS  Google Scholar 

  131. Kerr SL, Sharp B (2007) Chem Commun 4537–4539

Download references

Acknowledgements

Financial support from “Plan Nacional de I+D+I” (Spanish Ministry of Science and Innovation, and FEDER Programme) through the projects CTQ2006-02309/BQU and MAT2007-65097-C02-01 is gratefully acknowledged. In addition, B.F. acknowledges financial support from the “Juan de la Cierva” Research Programme of the Ministry of Science and Innovation of Spain. Both programmes are cofinanced by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Sanz-Medel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, B., Costa, J.M., Pereiro, R. et al. Inorganic mass spectrometry as a tool for characterisation at the nanoscale. Anal Bioanal Chem 396, 15–29 (2010). https://doi.org/10.1007/s00216-009-2959-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2959-6

Keywords

Navigation