Skip to main content
Log in

Fluorescent quantification of amino groups on silica nanoparticle surfaces

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Functionalization of the surfaces of silica particles is often the first step in their various applications. An improved heterogeneous Fmoc-Cl fluorescent assay using an aqueous solution was developed to detect the number of amino groups on solid-phase supports. The fluorescent Fmoc-Cl method is 50-fold more sensitive than the current UV assay using an organic solvent. This method, together with the homogeneous fluorescamine and OPA assays, is used to detect amino groups on the silica particle surface. The accuracy and effect factors of these methods were examined and the assays were optimized. The results showed that the amine groups on silica particles can produce stronger fluorescence than small amine molecules in solution, because the porous structure of the particle surface is a more hydrophobic environment. The number of active amino groups that can be conjugated with biomolecules is much less than the total number of amino groups on the silica particle. Compared with physical methods, chemical assays involving direct reaction with amino groups would furnish the closest result to the number of active amino groups on the particle surface.

Fluorescence emission of Fmoc-Cl in aqueous solution and linear correlation between intensity and concentration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gill S, Price BA, Jones CW (2007) J Catal 251:145–152

    Article  CAS  Google Scholar 

  2. Banerjee S, Santra S (2009) Tetrahedron Lett 50:2037–2040

    Article  CAS  Google Scholar 

  3. Trave E, Bello V, Enrichi F, Mattei G, Borsella E, Carpanese M, Falconieri M, Abate C, Herlin-Boime N, Jursiokova K, Costa F, Costa L, Gini L (2005) Opt Mater 27:1014–1019

    Article  CAS  Google Scholar 

  4. Mornet S, Elissalde C, Bidault O, Weill F, Sellier E, Nguyen O, Maglione M (2007) Chem Mater 19:987–992

    Article  CAS  Google Scholar 

  5. Correa-Duarte MA, Sobal N, Liz-Marzan LM, Giersig M (2004) Adv Mater 16:2179–2184

    Article  CAS  Google Scholar 

  6. Burns A, Ow H, Wiesner U (2006) Chem Soc Rev 35:1028–1042

    Article  CAS  Google Scholar 

  7. Knopp D, Tang D, Niessner R (2009) Anal Chim Acta 647:14–30

    Article  CAS  Google Scholar 

  8. Sokolova V, Epple M (2008) Angew Chem Int Ed 47:1382–1395

    Article  CAS  Google Scholar 

  9. De M, Ghosh PS, Rotello VM (2008) Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  10. Chen Y, Chi Y, Wen H, Lu Z (2007) Anal Chem 79:960–965

    Article  CAS  Google Scholar 

  11. McCaman MW, Robins E (1962) J Lab Clin Med 59:885–890

    CAS  Google Scholar 

  12. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Anal Biochem 34:595–598

    Article  CAS  Google Scholar 

  13. Weigele M, DeEernardo SL, Tengi JP, Leimgruber W (1972) J Am Chem Soc 94:5927–5928

    Article  CAS  Google Scholar 

  14. Udenfriend S, Stein S, Bohlen P, Dairman W, Leimgruber W, Weigele M (1972) Science 178:871–872

    Article  CAS  Google Scholar 

  15. Zhu R, Kok WT (1998) J Chromatogr A 814:213–221

    Article  CAS  Google Scholar 

  16. Roth M (1971) Anal Chem 43:880–882

    Article  CAS  Google Scholar 

  17. Aminot A, Kerouel R (2006) Mar Chem 98:223–240

    Article  CAS  Google Scholar 

  18. Herbert P, Santos L, Alves A (2001) J Food Sci 66:1319–1325

    Article  CAS  Google Scholar 

  19. Kay C, Lorthioir OE, Parr NJ, Congreve M, McKeown SC, Scicinski JJ, Ley SV (2000/2001) Biotechnol Bioeng 71:110–118

  20. Gude M, Ryf J, White PD (2002) Lett Pept Sci 9:203–206

    CAS  Google Scholar 

  21. Corsia K, Chellata F, Yahiaa L, Fernandes JC (2003) Biomaterials 24:1255–1264

    Article  Google Scholar 

  22. Kell AJ, Simard B (2007) Chem Commun 1227–1229

  23. Steinberg G, Stromsborg K, Thomas L, Barker D, Zhao C (2004) Biopolymers 73:597–605

    Article  CAS  Google Scholar 

  24. Simons SS Jr, Johnson DF (1976) J Am Chem Soc 98:7098–7099

    Article  CAS  Google Scholar 

  25. Simons SS Jr, Johnson DF (1978) J Org Chem 43:2886–2891

    Article  CAS  Google Scholar 

  26. Mopper K, Delmas D (1984) Anal Chem 56:2557–2560

    Article  CAS  Google Scholar 

  27. Nakamura H, Tamura Z (1981) Anal Chem 53:2190–2193

    Article  CAS  Google Scholar 

  28. Simons SS Jr, Johnson DF (1978) Anal Biochem 90:705–725

    Article  CAS  Google Scholar 

  29. Montigny P, Stobaugh JF, Givens RS, Carlson RG, Srinivasachar K, Sternson LA, Higuchi T (1987) Anal Chem 59:1096–1101

    Article  Google Scholar 

  30. Carpino LA, Han GY (1972) J Org Chem 37:3404–3409

    Article  CAS  Google Scholar 

  31. Einarsson S, Josefsson B, Lagerkvist S (1983) J Chromatogr 282:609–618

    Article  CAS  Google Scholar 

  32. Einarsson S, Folestad S, Josefsson B, Lagerkvist S (1986) Anal Chem 58:1638–1643

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge financial support of this work by the National Natural Science Foundation of China (grant nos 60671014, 20775012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 39.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhang, Y. Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399, 2503–2509 (2011). https://doi.org/10.1007/s00216-010-4622-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4622-7

Keywords

Navigation