Skip to main content
Log in

Layered-double-hydroxide-modified electrodes: electroanalytical applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional inorganic solids, such as layered double hydroxides (LDHs), also defined as anionic clays, have open structures and unique anion-exchange properties which make them very appropriate materials for the immobilization of anions and biomolecules that often bear an overall negative charge. This review aims to describe the important aspects and new developments of electrochemical sensors and biosensors based on LDHs, evidencing the research from our own laboratory and other groups. It is intended to provide an overview of the various types of chemically modified electrodes that have been developed with these 2D layered materials, along with the significant advances made over the last several years. In particular, we report the main methods used for the deposition of LDH films on different substrates, the conductive properties of these materials, the possibility to use them in the development of membranes for potentiometric anion analysis, the early analytical applications of chemically modified electrodes based on the ability of LDHs to preconcentrate redox-active anions and finally the most recent applications exploiting their electrocatalytic properties. Another promising application field of LDHs, when they are employed as host structures for enzymes, is biosensing, which is described considering glucose as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braterman PS, Xu ZP, Yarberry F (2004) In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Dekker, New York

    Google Scholar 

  2. Trifirò F, Vaccari A (1996) In: Alberti G, Bein T (eds) Hydrotalcite–like anionic clays. Comprehensive supramolecular chemistry. Pergamon, Oxford

    Google Scholar 

  3. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  4. Lv L, He J, Wei M, Evans DG, Duan X (2006) Water Res 40:735–743

    Article  CAS  Google Scholar 

  5. Goh KH, Lim TT, Banas A, Dong Z (2010) J Hazard Mater 179:818–827

    Article  CAS  Google Scholar 

  6. Abdolmohammad-Zadeh H, Rezvani Z, Sadeghi GH, Zorufi E (2011) Anal Chim Acta 685:212–219

    Article  CAS  Google Scholar 

  7. Violante A, Pucci M, Cozzolino V, Zhu J, Pigna M (2009) J Colloid Interface Sci 333:63–70

    Article  CAS  Google Scholar 

  8. Constantino VRL, Pinnavaia TJ (1994) Catal Lett 23:361–367

    Article  CAS  Google Scholar 

  9. Béres A, Pálinkó I, Kiricsi I, Nagy JB, Kiyozumi Y, Mizukami F (1999) Appl Catal A 182:237–247

    Article  Google Scholar 

  10. Basile F, Benito P, Fornasari G, Rosetti V, Scavetta E, Tonelli D, Vaccari A (2009) Appl Catal, B 91:563–572

    Article  CAS  Google Scholar 

  11. Fogg AM, Green VM, Harvey HG, O’Hare D (1999) Adv Mater 11:1466–1469

    Article  CAS  Google Scholar 

  12. Musumeci AW, Mortimer GM, Butler MK, Xu ZP (2010) Appl Clay Sci 48:271–279

    Article  CAS  Google Scholar 

  13. Shi W, Wei M, Evans DG, Duan X (2010) J Mater Chem 20:3901–3909

    Article  CAS  Google Scholar 

  14. Yan D, Lu J, Wei M, Han J, Ma J, Li F, Evans DG, Duan X (2009) Angew Chem Int Ed 48:3073–3076

    Article  CAS  Google Scholar 

  15. Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA (2009) Polymer 50:3564–3574

    Article  CAS  Google Scholar 

  16. Guo X, Zhang F, Evans DD, Duan X (2010) Chem Commun 46:5197–5210

    Article  CAS  Google Scholar 

  17. Del Hoyo C (2007) Appl Clay Sci 36:103–121

    Article  Google Scholar 

  18. Trikeriotis M, Ghanotakis DF (2007) Int J Pharm 332:176–184

    Article  CAS  Google Scholar 

  19. Choi JH, Jung J, Oh SJM, Park M, Jeong J, Kang YK, Han OJ (2004) Biomaterials 25:3059–3064

    Article  Google Scholar 

  20. Li B, He J, Evans DG, Duan X (2004) Appl Clay Sci 27:199–207

    Article  Google Scholar 

  21. Perioli L, Posati T, Nocchetti M, Bellezza F, Costantino U, Cipiciani A (2011) Appl Clay Sci 53:374–378

    Article  CAS  Google Scholar 

  22. Mousty C (2004) Appl Clay Sci 27:159–177

    Article  CAS  Google Scholar 

  23. Morigi M, Scavetta E, Berrettoni M, Giorgetti M, Tonelli D (2001) Anal Chim Acta 439:265–272

    Article  CAS  Google Scholar 

  24. Ni F, Wang Y, Zhang D, Gao F, Li M (2010) Electroanalysis 22:1130–1135

    Article  CAS  Google Scholar 

  25. Mousty C, Vieille L, Cosnier S (2007) Biosens Bioelectron 22:1733–1738

    Article  CAS  Google Scholar 

  26. Darder M, López-Blanco M, Aranda P, Leroux F, Ruiz-Hitzky E (2005) Chem Mater 17:1969–1977

    Article  CAS  Google Scholar 

  27. Yin Z, Wu J, Yang Z (2011) Biosens Bioelectron 26:1970–1974

    Article  CAS  Google Scholar 

  28. Mousty C (2010) Anal Bioanal Chem 396:315–325

    Article  CAS  Google Scholar 

  29. Gianfreda L, Rao MA, Sannino F, Saccomandi F, Violante A (2002) Dev Soil Sci 28B:301–327

    Article  CAS  Google Scholar 

  30. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) J Am Chem Soc 128:4872–4880

    Article  CAS  Google Scholar 

  31. Shao M, Han J, Shi W, Wei M, Duan X (2010) Electrochem Commun 12:1077–1080

    Article  CAS  Google Scholar 

  32. Kloprogge JT, Hickey L, Trujilano R, Holgado MJ, San Román MS, Rives V, Martens WN, Frost RL (2006) Cryst Growth Des 6:1533–1536

    Article  CAS  Google Scholar 

  33. Han Y, Liu Z-H, Yang Z, Wang Z, Tang X, Wang T, Fan L, Ooi K (2008) Chem Mater 20:360–363

    Article  CAS  Google Scholar 

  34. Prince J, Montoya A, Ferrat G, Valente JS (2009) Chem Mater 21:5826–5835

    Article  CAS  Google Scholar 

  35. Prevot V, Forano C, Besse JP (2005) Chem Mater 17:6695–6701

    Article  CAS  Google Scholar 

  36. Hu G, Wang N, O’Hare D, Davis J (2007) J Mater Chem 17:2257–2266

    Article  CAS  Google Scholar 

  37. Bellezza F, Cipiciani A, Costantino U, Nocchetti M, Posati T (2009) Eur J Inorg Chem 18:2603–2611

    Article  Google Scholar 

  38. Bellezza F, Nocchetti M, Posati T, Giovagnoli S, Cipiciani S (2012) J Colloid Interface Sci 376:20–27

    Article  CAS  Google Scholar 

  39. Indira L, Kamath PV (1994) J Mater Chem 4:1487–1490

    Article  CAS  Google Scholar 

  40. Dixit M, Kamath PV (1995) J Power Sources 56:97–100

    Article  CAS  Google Scholar 

  41. Scavetta E, Ballarin B, Giorgetti M, Carpani I, Cogo F, Tonelli D (2004) J New Mater Electrochem Syst 7:43–50

    CAS  Google Scholar 

  42. Scavetta E, Mignani A, Prandstraller D, Tonelli D (2007) Chem Mater 19:4253–4529

    Article  Google Scholar 

  43. Scavetta E, Ballarin B, Gazzano M, Tonelli D (2009) Electrochim Acta 54:1027–1033

    Article  CAS  Google Scholar 

  44. Basile F, Benito P, Fornasari G, Monti M, Scavetta E, Tonelli D, Vaccari A (2010) Catal Today 157:183–190

    Article  CAS  Google Scholar 

  45. Therias S, Mousty C (1995) Appl Clay Sci 10:147–162

    Article  CAS  Google Scholar 

  46. Itaya K, Chang H-C, Uchida I (1987) Inorg Chem 26:624–626

    Article  CAS  Google Scholar 

  47. Mousty C, Therias S, Forano C, Besse J-P (1994) J Electroanal Chem 374:63–69

    Article  CAS  Google Scholar 

  48. Therias S, Mousty C, Forano C, Besse J-P (1996) Langmuir 12:4914–4920

    Article  CAS  Google Scholar 

  49. Walcarius A, Lefevre G, Rapin J-P, Renaudin G, Francois M (2001) Electroanalysis 13:313–320

    Article  CAS  Google Scholar 

  50. Li M, Ni F, Wang Y, Xu S, Zhang D, Wang L (2009) Appl Clay Sci 46:396–400

    Article  CAS  Google Scholar 

  51. Yao K, Taniguchi M, Nakata M, Shimazu K, Takahashi M, Yamagishi A (1998) J Electroanal Chem 457:119–128

    Article  CAS  Google Scholar 

  52. Qiu J, Villemure G (1995) J Electroanal Chem 395:159–166

    Article  Google Scholar 

  53. Qiu J, Villemure G (1997) J Electroanal Chem 428:165–172

    Article  CAS  Google Scholar 

  54. Roto R, Villemure G (2002) J Electroanal Chem 527:123–130

    Article  CAS  Google Scholar 

  55. Roto R, Yamagishi A, Villemure G (2004) J Electroanal Chem 572:101–108

    Article  CAS  Google Scholar 

  56. Ballarin B, Seeber R, Tonelli D, Vaccari A (1999) J Electroanal Chem 463:123–127

    Article  CAS  Google Scholar 

  57. Scavetta E, Tonelli D, Giorgetti M, Nobili F, Marassi R, Berrettoni M (2003) Electrochim Acta 48:1347–1355

    Article  CAS  Google Scholar 

  58. Scavetta E, Berrettoni M, Giorgetti M, Tonelli D (2002) Electrochim Acta 47:2451–2461

    Article  CAS  Google Scholar 

  59. Carpani I, Tonelli D (2006) Electroanalysis 24:2421–2425

    Article  Google Scholar 

  60. Khenifi A, Derriche Z, Forano C, Prevot V, Mousty C, Scavetta E, Ballarin B, Guadagnini L, Tonelli D (2009) Anal Chim Acta 654:97–102

    Article  CAS  Google Scholar 

  61. Scavetta E, Tonelli D (2005) Electroanalysis 17:363–370

    Article  CAS  Google Scholar 

  62. Li MG, Chen SH, Ni F, Wang YL, Wang L (2008) Electrochim Acta 53:7255–7260

    Article  CAS  Google Scholar 

  63. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  64. Wang Y, Chen S, Ni F, Gao F, Li M (2009) Electroanalysis 21:2125–2132

    Article  CAS  Google Scholar 

  65. Wang J, Cui L, Yin H, Dong J, Ai S (2012) J Solid State Electrochem 16:1545–1550

    Article  CAS  Google Scholar 

  66. Han J, Xu X, Rao X, Wei M, Evans DG, Duan X (2011) J Mater Chem 21:2126–2130

    Article  CAS  Google Scholar 

  67. Kong X, Zhao J, Han JB, Zhang D, Wei M, Duan X (2011) Electrochim Acta 56:1123–1129

    Article  CAS  Google Scholar 

  68. Kong X, Shi W, Zhao J, Wei M, Duan X (2011) Talanta 85:493–498

    Article  CAS  Google Scholar 

  69. Shao M, Xu X, Han J, Zhao J, Shi W, Kong X, Wei M, Evans DG, Duan X (2011) Langmuir 27:8233–8240

    Article  CAS  Google Scholar 

  70. Wang Y, Liu L, Zhang D, Xu S, Li M (2010) Electrocatalysis 1:230–234

    Article  CAS  Google Scholar 

  71. Zhang B, Shi S, Shi W, Sun Z, Kong X, Wei M, Duan X (2012) Electrochim Acta 67:133–139

    Article  CAS  Google Scholar 

  72. Li M, Zhu JE, Zhang L, Chen X, Zhang H, Zhang F, Xu S, Evans DE (2011) Nanoscale 3:4240–4246

    Article  CAS  Google Scholar 

  73. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  74. Ballarin B, Morigi M, Scavetta E, Seeber R, Tonelli D (2000) J Electroanal Chem 492:7–14

    Article  CAS  Google Scholar 

  75. Mignani A, Corticelli C, Tonelli D, Scavetta E (2011) Electroanalysis 23:1745–1751

    Article  CAS  Google Scholar 

  76. Baeumner AJ (2003) Anal Bioanal Chem 377:434–445

    Article  CAS  Google Scholar 

  77. Karyakin AA, Kotel’nikova EA, Lukachova LV, Karyakina EE, Wang J (2002) Anal Chem 74:1597–1603

    Article  CAS  Google Scholar 

  78. Quinto M, Losito I, Palmisano F, Zambonin CG (2000) Anal Chim Acta 420:9–17

    Article  CAS  Google Scholar 

  79. Cosnier S (2007) Anal Lett 40:1260–1279

    Article  CAS  Google Scholar 

  80. Mousty C, Forano C, Fleutot S, Dupin JC (2009) Electroanalysis 21:399–408

    Article  CAS  Google Scholar 

  81. Shi Q, Han E, Shan D, Yao W, Xue H (2008) Bioprocess Biosyst Eng 31:519–526

    Article  CAS  Google Scholar 

  82. Ding S-N, Shan D, Xue H-G, Zhu D-B, Cosnier S (2009) Anal Sci 25:1421–1425

    Article  CAS  Google Scholar 

  83. Schmidt H-L, Schuhman W (1996) Biosens Bioelectron 11:127–135

    Article  CAS  Google Scholar 

  84. Colombari M, Ballarin B, Carpani I, Guadagnini L, Mignani A, Scavetta E, Tonelli D (2007) Electroanalysis 19:2321–2337

    Article  CAS  Google Scholar 

  85. Shan D, Cosnier S, Mousty C (2003) Anal Lett 36:909–922

    Article  CAS  Google Scholar 

  86. Shan D, Yao W, Xue H (2007) Biosens Bioelectron 23:432–437

    Article  CAS  Google Scholar 

  87. Wang J (2008) Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  88. Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg DJ (1993) Mol Biol 229:153–172

    Article  CAS  Google Scholar 

  89. Zhang Y, Chen X, Wang J, Yang W (2008) Electrochem Solid State Lett 11:F19–F21

    Article  CAS  Google Scholar 

  90. Ren L, He J, Zhang S, Evans DG, Duan X (2002) J Mol Catal B Enzym 18:3–11

    Article  CAS  Google Scholar 

  91. Forano C, Vial S, Mousty C (2006) Curr Nanosci 2:283–294

    Article  CAS  Google Scholar 

  92. Mignani A, Luciano G, Lanteri S, Leardi R, Scavetta E, Tonelli D (2007) Anal Chim Acta 599:36–40

    Article  CAS  Google Scholar 

  93. Guadagnini L, Ballarin B, Mignani A, Scavetta E, Tonelli D (2007) Sensors Actuators B 126:492–498

    Article  Google Scholar 

  94. Addari D, Mignani A, Scavetta E, Tonelli D, Rossi A (2011) Surf Interface Anal 43:816–822

    Article  CAS  Google Scholar 

  95. Mignani A, Scavetta E, Tonelli D (2006) Anal Chim Acta 577:98–106

    Article  CAS  Google Scholar 

  96. Prevot V, Forano C, Khenifi A, Ballarin B, Scavetta E, Mousty C (2011) Chem Commun 47:1761–1763

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenica Tonelli.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonelli, D., Scavetta, E. & Giorgetti, M. Layered-double-hydroxide-modified electrodes: electroanalytical applications. Anal Bioanal Chem 405, 603–614 (2013). https://doi.org/10.1007/s00216-012-6586-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6586-2

Keywords

Navigation