Skip to main content
Log in

Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is crucial to study the presence of transformation products (TPs) of emerging contaminants that can be potentially found in the environment after biological or chemical degradation. This review focuses on the potential and shortcomings of high-resolution mass spectrometry (HRMS) to identify these TPs, with emphasis on recent developments in mass analyzers, data evaluation, and compound identification workflows and applications. Advances in HRMS technologies, including direct introduction or in-line chromatographic separation modes, ionization techniques, mass analyzers, and detection methods, have led to powerful tools to assess the molecular changes and the opening of new horizons to identify unknown molecules. Advances in HRMS pertaining to the generation of analytical data for the main methods to identify TPs, including nontargeted and targeted approaches as they are applied to elucidate the structure of TPs, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hernández F, Ibañez M, Bade R, Bijlsma L, Sancho JV (2014) Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. Trends Anal Chem 63:140–157

    Article  Google Scholar 

  2. Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466:421–438

    Article  Google Scholar 

  3. Carmona E, Andreu V, Picó Y (2014) Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water. Sci Total Environ 484:53–63

    Article  CAS  Google Scholar 

  4. Devier MH, Mazellier P, Ait-Aissa S, Budzinski H (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. C R Chim 14:766–779

    Article  CAS  Google Scholar 

  5. Andrés-Costa MJ, Rubio-López N, Morales Suárez-Varela M, Picó Y (2014) Occurrence and removal of drugs of abuse in wastewater treatment plants of Valencia (Spain). Environ Pollut 194:152–162

    Article  Google Scholar 

  6. Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500:250–269

    Article  Google Scholar 

  7. Postigo C, Richardson SD (2014) Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment. J Hazard Mater 279:461–475

    Article  CAS  Google Scholar 

  8. Liu J, Avendano SM (2013) Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ Int 61:98–114

    Article  CAS  Google Scholar 

  9. Hübner U, von Gunten U, Jekel M (2015) Evaluation of the persistence of transformation products from ozonation of trace organic compounds – a critical review. Water Res 68:150–170

    Article  Google Scholar 

  10. Toolaram AP, Kümmerer K, Schneider M (2014) Environmental risk assessment of anti-cancer drugs and their transformation products: a focus on their genotoxicity characterization-state of knowledge and short comings. Mutat Res 760:18–35

    Article  CAS  Google Scholar 

  11. Petsas A, Vagi M, Nikolaou A, Kostopoulou M (2013) Trends in the analysis of pollutant transformation products in the marine environment. In: Proceedings of the 13th international conference on environmental science and technology, 474, CEST, Athens, Greece. http://cest2013.gnest.org/. Accessed 11 May 2015

  12. Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PN, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563

    Article  CAS  Google Scholar 

  13. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  CAS  Google Scholar 

  14. Evgenidou EN, Konstantinou IK, Lambropoulou DA (2015) Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci Total Environ 505:905–926

    Article  CAS  Google Scholar 

  15. Haddad T, Baginska E, Kümmerer K (2015) Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: an increasing challenge calling for higher emphasis on measures at the beginning of the pipe. Water Res 72:75–126

    Article  CAS  Google Scholar 

  16. Agüera A (2012) Photodegradation pathways of emerging contaminants in water. In: Belgiorno V, Rizo L (eds) Emerging contaminants into the environment: contamination pathways and control, ASTER, Fisiciano, Italy, pp 27–44

  17. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  18. Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503:32–47

    Article  Google Scholar 

  19. Horvat AJM, Petrovic M, Babic S, Pavlovic DM, Asperger D, Pelko S, Mance AD, Kastelan-Macan M (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trends Anal Chem 31:61–84

    Article  CAS  Google Scholar 

  20. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS (2015) Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Anal Chem 66:32–44

    Article  CAS  Google Scholar 

  21. Rosi-Marshall EJ, Royer TV (2012) Pharmaceutical compounds and ecosystem function: an emerging research challenge for aquatic ecologists. Ecosystems 15:867–880

    Article  CAS  Google Scholar 

  22. Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121:432–440

    Article  CAS  Google Scholar 

  23. Farré M, Kantiani L, Petrovic M, Pérez S, Barceló D (2012) Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J Chromatogr A 1259:86–99

    Article  Google Scholar 

  24. Fischer K, Fries E, Korner W, Schmalz C, Zwiener C (2012) New developments in the trace analysis of organic water pollutants. Appl Microbiol Biotechnol 94:11–28

    Article  CAS  Google Scholar 

  25. Jakimska A, Kot-Wasik A, Namiesnik J (2014) The current state-of-the-art in the determination of pharmaceutical residues in environmental matrices using hyphenated techniques. Crit Rev Anal Chem 44:277–298

    Article  CAS  Google Scholar 

  26. Zonja B, Aceña J, Pérez S, Barceló D (2013) methods for elucidation of transformation pathways: identification of intermediate products, chiral, and isotope-ratio mass spectrometry analysis. In: Petrovic M, Barceló D, Pérez S (eds) Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 593–610

    Google Scholar 

  27. Kosjek T, Perko S, Zupanc M, Hren MZ, Dragicevic TL, Zigon D, Kompare B, Heath E (2012) Environmental occurrence, fate and transformation of benzodiazepines in water treatment. Water Res 46:355–368

    Article  CAS  Google Scholar 

  28. Hernández F, Sancho JV, Ibáñez M, Abad E, Portoles T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264

    Article  Google Scholar 

  29. Guillen D, Ginebreda A, Farré M, Darbra RM, Petrovic M, Gros M, Barceló D (2012) Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective. Sci Total Environ 440:236–252

    Article  CAS  Google Scholar 

  30. Delgado LF, Charles P, Glucina K, Morlay C (2012) The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—a review. Sci Total Environ 435:509–525

    Article  Google Scholar 

  31. Delgado LF, Charles P, Glucina K, Morlay C (2012) QSAR-like models: a potential tool for the selection of PhACs and EDCs for monitoring purposes in drinking water treatment systems - a review. Water Res 46:6196–6209

    Article  CAS  Google Scholar 

  32. Agüera A, Bueno MJM, Fernández-Alba AR (2013) New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environ Sci Pollut Res 20:3496–3515

    Article  Google Scholar 

  33. Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manag 133:378–387

    Article  CAS  Google Scholar 

  34. Clarke RM, Cummins E (2014) Evaluation of "classic" and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess 21:492–513

    Article  Google Scholar 

  35. Lange FT, Scheurer M, Brauch HJ (2012) Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review. Anal Bioanal Chem 403:2503–2518

    Article  CAS  Google Scholar 

  36. Zedda M, Zwiener C (2012) Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for compound libraries and computer tools. Anal Bioanal Chem 403:2493–2502

    Article  CAS  Google Scholar 

  37. Nurmi J, Pellinen J, Rantalainen AL (2012) Critical evaluation of screening techniques for emerging environmental contaminants based on accurate mass measurements with time-of-flight mass spectrometry. J Mass Spectrom 47:303–312

    Article  CAS  Google Scholar 

  38. Prasse C, Wagner M, Schulz R, Ternes TA (2011) Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment. Environ Sci Technol 45:2761–2769

    Article  CAS  Google Scholar 

  39. Wick A, Wagner M, Ternes TA (2011) Elucidation of the transformation pathway of the opium alkaloid codeine in biological wastewater treatment. Environ Sci Technol 45:3374–3385

    Article  CAS  Google Scholar 

  40. Wang N, Buck RC, Szostek B, Sulecki LM, Wolstenholme BW (2012) 5:3 polyfluorinated acid aerobic biotransformation in activated sludge via novel "one-carbon removal pathways". Chemosphere 87:527–534

    Article  CAS  Google Scholar 

  41. Rubirola A, Llorca M, Rodriguez-Mozaz S, Casas N, Rodriguez-Roda I, Barceló D, Buttiglieri G (2014) Characterization of metoprolol biodegradation and its transformation products generated in activated sludge batch experiments and in full scale WWTPs. Water Res 63:21–32

    Article  CAS  Google Scholar 

  42. Kosjek T, Negreira N, López de Alda M, Barceló D (2015) Aerobic activated sludge transformation of methotrexate: identification of biotransformation products. Chemosphere 119:S42–S50

    Article  CAS  Google Scholar 

  43. Beel R, Eversloh CL, Ternes TA (2013) Biotransformation of the UV-filter sulisobenzone: challenges for the identification of transformation products. Environ Sci Technol 47:6819–6828

    CAS  Google Scholar 

  44. Luft A, Wagner M, Ternes TA (2014) Transformation of biocides Irgarol and terbutryn in the biological wastewater treatment. Environ Sci Technol 48:244–254

    Article  CAS  Google Scholar 

  45. Chen X, Casas ME, Nielsen JL, Wimmer R, Bester K (2015) Identification of triclosan-O-sulfate and other transformation products of triclosan formed by activated sludge. Sci Total Environ 505:39–46

    Article  CAS  Google Scholar 

  46. Mardal M, Meyer MR (2014) Studies on the microbial biotransformation of the novel psychoactive substance methylenedioxypyrovalerone (MDPV) in wastewater by means of liquid chromatography-high resolution mass spectrometry/mass spectrometry. Sci Total Environ 493:588–595

    Article  CAS  Google Scholar 

  47. Huntscha S, Hofstetter TB, Schymanski EL, Spahr S, Hollender J (2014) Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environ Sci Technol 48:4435–4443

    Article  CAS  Google Scholar 

  48. Gulde R, Helbling DE, Scheidegger A, Fenner K (2014) pH-dependent biotransformation of ionizable organic micropollutants in activated sludge. Environ Sci Technol 48:13760–13768

    Article  CAS  Google Scholar 

  49. Tseng N, Wang N, Szostek B, Mahendra S (2014) Biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by a wood-rotting fungus. Environ Sci Technol 48:4012–4020

    Article  CAS  Google Scholar 

  50. Llorca M, Rodríguez-Mozaz S, Couillerot O, Panigoni K, de Gunzburg J, Bayer S, Czaja R, Barceló D (2015) Identification of new transformation products during enzymatic treatment of tetracycline and erythromycin antibiotics at laboratory scale by an on-line turbulent flow liquid-chromatography coupled to a high resolution mass spectrometer LTQ-Orbitrap. Chemosphere 119:90–98

    Article  CAS  Google Scholar 

  51. Mejia Avendano S, Liu J (2015) Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives. Chemosphere 119:1084–1090

    Article  CAS  Google Scholar 

  52. Li Z, Maier MP, Radke M (2014) Screening for pharmaceutical transformation products formed in river sediment by combining ultrahigh performance liquid chromatography/high resolution mass spectrometry with a rapid data-processing method. Anal Chim Acta 810:61–70

    Article  CAS  Google Scholar 

  53. Terzic S, Senta I, Matosic M, Ahel M (2011) Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 401:353–363

    Article  CAS  Google Scholar 

  54. Pérez-Parada A, Agüera A, Del Mar Gomez-Ramos M, Garcia-Reyes JF, Heinzen H, Fernández-Alba AR (2011) Behavior of amoxicillin in wastewater and river water: identification of its main transformation products by liquid chromatography/electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:731–742

    Article  Google Scholar 

  55. Aceña J, Pérez S, Gardinali P, Abad JL, Eichhorn P, Heuett N, Barceló D (2014) Structure elucidation of phototransformation products of unapproved analogs of the erectile dysfunction drug sildenafil in artificial freshwater with UPLC-Q Exactive-MS. J Mass Spectrom 49:1279–1289

    Article  Google Scholar 

  56. Diez-Mato E, Cortezon-Tamarit FC, Bogialli S, García-Fresnadillo D, Marazuela MD (2014) Phototransformation of model micropollutants in water samples by photocatalytic singlet oxygen production in heterogeneous medium. Appl Catal B 160:445–455

    Article  Google Scholar 

  57. Eichhorn P, Pérez S, Aceña J, Gardinali P, Abad JL, Barceló D (2012) Identification of phototransformation products of sildenafil (Viagra) and its N-demethylated human metabolite under simulated sunlight. J Mass Spectrom 47:701–711

    Article  CAS  Google Scholar 

  58. Jelic A, Michael I, Achilleos A, Hapeshi E, Lambropoulou D, Pérez S, Petrovic M, Fatta-Kassinos D, Barceló D (2013) Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment. J Hazard Mater 263:177–186

    Article  CAS  Google Scholar 

  59. Souissi Y, Bouchonnet S, Bourcier S, Kusk KO, Sablier M, Andersen HR (2013) Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water. Sci Total Environ 458:527–534

    Article  Google Scholar 

  60. Haddad T, Kümmerer K (2014) Characterization of photo-transformation products of the antibiotic drug ciprofloxacin with liquid chromatography–tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap. Chemosphere 115:40–46

    Article  CAS  Google Scholar 

  61. Michael I, Achilleos A, Lambropoulou D, Torrens VO, Pérez S, Petrovic M, Barceló D, Fatta-Kassinos D (2014) Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B 147:1015–1027

    Article  CAS  Google Scholar 

  62. Zonja B, Goncalves C, Pérez S, Delgado A, Petrovic M, Alpendurada MF, Barceló D (2014) Evaluation of the phototransformation of the antiviral zanamivir in surface waters through identification of transformation products. J Hazard Mater 265:296–304

    Article  CAS  Google Scholar 

  63. Segura PA, Kaplan P, Yargeau V (2013) Identification and structural elucidation of ozonation transformation products of estrone. Chem Cent J 7:74

    Article  Google Scholar 

  64. Tay KS, Rahman NA, Bin Abas MR (2013) Ozonation of metoprolol in aqueous solution: ozonation by-products and mechanisms of degradation. Environ Sci Pollut Res 20:3115–3121

    Article  CAS  Google Scholar 

  65. Bautitz IR, Velosa AC, Nogueira RFP (2012) Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88:688–692

    Article  CAS  Google Scholar 

  66. Sirtori C, Agüera A, Carra I, Pérez JAS (2014) Identification and monitoring of thiabendazole transformation products in water during Fenton degradation by LC-QTOF-MS. Anal Bioanal Chem 406:5323–5337

    Article  CAS  Google Scholar 

  67. Ji YF, Ferronato C, Salvador A, Yang X, Chovelon JM (2014) Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Sci Total Environ 472:800–808

    Article  CAS  Google Scholar 

  68. Michael I, Hapeshi E, Aceña J, Pérez S, Petrovic M, Zapata A, Barceló D, Malato S, Fatta-Kassinos D (2013) Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products. Sci Total Environ 461:39–48

    Article  Google Scholar 

  69. Eversloh CL, Henning N, Schulz M, Ternes TA (2014) Electrochemical treatment of iopromide under conditions of reverse osmosis concentrates - elucidation of the degradation pathway. Water Res 48:237–246

    Article  Google Scholar 

  70. Grbovic G, Trebse P, Dolenc D, Lebedev AT, Sarakha M (2013) LC/MS study of the UV filter hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate (DHHB) aquatic chlorination with sodium hypochlorite. J Mass Spectrom 48:1232–1240

    Article  CAS  Google Scholar 

  71. Boix C, Ibáñez M, Bijlsma L, Sancho JV, Hernández F (2014) Investigation of cannabis biomarkers and transformation products in waters by liquid chromatography coupled to time of flight and triple quadrupole mass spectrometry. Chemosphere 99:64–71

    Article  CAS  Google Scholar 

  72. Jewell KS, Wick A, Ternes TA (2014) Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge. Water Res 48:478–489

    Article  CAS  Google Scholar 

  73. Laurence C, Rivard M, Martens T, Morin C, Buisson D, Bourcier S, Sablier M, Oturan MA (2014) Anticipating the fate and impact of organic environmental contaminants: a new approach applied to the pharmaceutical furosemide. Chemosphere 113:193–199

    Article  CAS  Google Scholar 

  74. Ibáñez M, Gracia-Lor E, Sancho JV, Hernández F (2012) Importance of MS selectivity and chromatographic separation in LC-MS/MS-based methods when investigating pharmaceutical metabolites in water. Dipyrone as a case of study. J Mass Spectrom 47:1040–1046

    Article  Google Scholar 

  75. Hernández F, Ibáñez M, Gracia-Lor E, Sancho JV (2011) Retrospective LC-QTOF-MS analysis searching for pharmaceutical metabolites in urban wastewater. J Sep Sci 34:3517–3526

    Article  Google Scholar 

  76. Gómez-Ramos MD, Pérez-Parada A, Garcia-Reyes JF, Fernandez-Alba AR, Aguera A (2011) Use of an accurate-mass database for the systematic identification of transformation products of organic contaminants in wastewater effluents. J Chromatogr A 1218:8002–8012

    Article  Google Scholar 

  77. Hug C, Ulrich N, Schulze T, Brack W, Krauss M (2014) Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut 184:25–32

    Article  CAS  Google Scholar 

  78. Masiá A, Ibáñez M, Blasco C, Sancho JV, Picó Y, Hernández F (2013) Combined use of liquid chromatography triple quadrupole mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry in systematic screening of pesticides and other contaminants in water samples. Anal Chim Acta 761:117–127

    Article  Google Scholar 

  79. Masiá A, Campo J, Blasco C, Picó Y (2014) Ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry to identify contaminants in water: an insight on environmental forensics. J Chromatogr A 1345:86–97

    Article  Google Scholar 

  80. Muller A, Schulz W, Ruck WKL, Weber WH (2011) A new approach to data evaluation in the non-target screening of organic trace substances in water analysis. Chemosphere 85:1211–1219

    Article  Google Scholar 

  81. López SH, Ulaszewska MM, Hernando MD, Bueno MJM, Gómez MJ, Fernández-Alba AR (2014) Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environ Sci Pollut Res 21:12583–12604

    Article  Google Scholar 

  82. Hernández F, Portoles T, Ibáñez M, Bustos-Lopez MC, Diaz R, Botero-Coy AM, Fuentes CL, Peñuela G (2012) Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia. Sci Total Environ 439:249–259

    Article  Google Scholar 

  83. Souchier M, Benali-Raclot D, Benanou D, Boireau V, Gomez E, Casellas C, Chiron S (2015) Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry. Sci Total Environ 502:199–205

    Article  CAS  Google Scholar 

  84. Chiaia-Hernández AC, Krauss M, Hollender J (2013) Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environ Sci Technol 47:976–986

    Article  Google Scholar 

  85. Bueno MJM, Boillot C, Munaron D, Fenet H, Casellas C, Gomez E (2014) Occurrence of venlafaxine residues and its metabolites in marine mussels at trace levels: development of analytical method and a monitoring program. Anal Bioanal Chem 406:601–610

    Article  Google Scholar 

  86. Bueno MJM, Boillot C, Fenet H, Chiron S, Casellas C, Gomez E (2013) Fast and easy extraction combined with high resolution-mass spectrometry for residue analysis of two anticonvulsants and their transformation products in marine mussels. J Chromatogr A 1305:27–34

    Article  Google Scholar 

  87. Vona A, di Martino F, Garcia-Ivars J, Picó Y, Mendoza-Roca JA, Iborra-Clar MI (2015) Comparison of different removal techniques for selected pharmaceuticals. J Water Process Eng 5:48–57

    Article  Google Scholar 

  88. Pascual-Aguilar J, Andreu V, Gimeno-García E, Picó Y (2015) Current anthropogenic pressures on agro-ecological protected coastal wetlands. Sci Total Environ 503–504:90–199

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness through the projects “Assessing and Predicting Effects on Water Quantity and Quality in Iberian Rivers Caused by Global Change (SCARCE)” (no. CSD2009-00065; http://www.scarceconsolider.es) and “Evaluation of Emerging Contaminants in the Turia River Basins: From Basic Research to the Application of Environmental Forensics (EMERFOR)” (GCL2011-29703-C02-02; http://mefturia.es).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Picó.

Additional information

Published in the topical collection High-Resolution Mass Spectrometry in Food and Environmental Analysis with guest editor Aldo Laganà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picó, Y., Barceló, D. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon. Anal Bioanal Chem 407, 6257–6273 (2015). https://doi.org/10.1007/s00216-015-8739-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8739-6

Keywords

Navigation