Skip to main content
Log in

In situ monitoring, separation, and characterization of gold nanorod transformation during seed-mediated synthesis

  • Rapid Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The control of gold nanorod (GNR) solution-based syntheses has been hindered in part by the inability to examine and control the conversion of precursor seed populations to anisotropic materials, which have resulted in low yields of desired products and limited their commercial viability. The advantages offered by tandem separation and characterization methods utilizing asymmetric-flow field flow fractionation (A4F) are principally achieved as a result of their non-disruptive nature (minimizing artefacts), fast throughput, and in-situ analysis. With hyphenated A4F methods, resolved populations of seeds and secondary products, up to long aspect ratio rods, have been achieved and exemplify progress towards elucidating mechanistic aspects of formation and thus rational design. While there have been previously reported studies on A4F separation of GNRs, to our knowledge, this is the first published investigation of in situ GNR growth, separation, and characterization based on A4F, where its utilization in this capacity goes beyond traditional separation analysis. By using hydroquinone as the reducing agent, the conversion of the initial seed population to a distribution of products, including the GNRs, could be monitored in real time using A4F hyphenated with a diode array detector. Transmission electron microscopy confirms that the number of peaks observed during fractionation corresponds with size and shape dispersity. This proof-of-principle study introduces A4F as a technique that establishes a foundation for future mechanistic studies on the growth of GNRs from gold seeds, including conversion of the seed population to initial products, a topic highly relevant to advancing progress in nanomanufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

References

  1. Zheng HM, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP. Observation of single colloidal platinum nanocrystal growth trajectories. Science. 2009;324(5932):1309–12. doi:10.1126/science.1172104.

    Article  CAS  Google Scholar 

  2. Senapati D, Singh AK, Khan SA, Senapati T, Ray PC. Probing real time gold nanostar formation process using two-photon scattering spectroscopy. Chem Phys Lett. 2011;504(1–3):46–51. doi:10.1016/j.cplett.2011.01.046.

    Article  CAS  Google Scholar 

  3. Renaud G, Lazzari R, Revenant C, Barbier A, Noblet M, Ulrich O, et al. Real-time monitoring of growing nanoparticles. Science. 2003;300(5624):1416–9. doi:10.1126/science.1082146.

    Article  CAS  Google Scholar 

  4. Grzelczak M, Sanchez-Iglesias A, Rodriguez-Gonzalez B, Alvarez-Puebla R, Perez-Juste J, Liz-Marzan LM. Influence of iodide ions on the growth of gold nanorods: tuning tip curvature and surface plasmon resonance. Adv Funct Mater. 2008;18(23):3780–6. doi:10.1002/adfm.200800706.

    Article  CAS  Google Scholar 

  5. Bisker G, Yeheskely-Hayon D, Minai L, Yelin D. Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells. J Control Release. 2012;162(2):303–9. doi:10.1016/j.jconrel.2012.06.030.

    Article  CAS  Google Scholar 

  6. Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX, Gou L, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857–70. doi:10.1021/jp0516846.

    Article  CAS  Google Scholar 

  7. Park JH, von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, Ruoslahti E, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci U S A. 2010;107(3):981–6. doi:10.1073/pnas.0909565107.

    Article  CAS  Google Scholar 

  8. Oyelere AK, Chen PC, Huang XH, El-Sayed IH, El-Sayed MA. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem. 2007;18(5):1490–7. doi:10.1021/bc070132i.

    Article  CAS  Google Scholar 

  9. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–7. doi:10.1016/j.jconrel.2006.06.017.

    Article  CAS  Google Scholar 

  10. Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater. 2008;20(20):3832. doi:10.1002/adma.200800921.

    Article  CAS  Google Scholar 

  11. Ma ZY, Xia HX, Liu YP, Liu B, Chen W, Zhao YD. Applications of gold nanorods in biomedical imaging and related fields. Chin Sci Bull. 2013;58(21):2530–6. doi:10.1007/s11434-013-5720-7.

    Article  CAS  Google Scholar 

  12. Pissuwan D, Valenzuela SM, Cortie MB. Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol Genet Eng Rev. 2008;25(25):93–112.

    Article  CAS  Google Scholar 

  13. Lohse SE, Murphy CJ. The quest for shape control: a history of gold nanorod synthesis. Chem Mater. 2013;25(8):1250–61. doi:10.1021/cm303708p.

    Article  CAS  Google Scholar 

  14. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, et al. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc. 2010;132(4):1296–301. doi:10.1021/ja906506j.

    Article  CAS  Google Scholar 

  15. Park K, Drummy LF, Wadams RC, Koerner H, Nepal D, Fabris L, et al. Growth mechanism of gold nanorods. Chem Mater. 2013;25(4):555–63. doi:10.1021/cm303659q.

    Article  CAS  Google Scholar 

  16. Perez-Juste J, Liz-Marzan LM, Carnie S, Chan DYC, Mulvaney P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater. 2004;14(6):571–9. doi:10.1002/adfm.200305068.

    Article  CAS  Google Scholar 

  17. Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater. 2004;16(19):3633–40. doi:10.1021/cm0492336.

    Article  CAS  Google Scholar 

  18. Mohamed MB, Ismail KZ, Link S, El-Sayed MA. Thermal reshaping of gold nanorods in micelles. J Phys Chem B. 1998;102(47):9370–4. doi:10.1021/jp9831482.

    Article  CAS  Google Scholar 

  19. Link S, Burda C, Nikoobakht B, El-Sayed MA. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B. 2000;104(26):6152–63. doi:10.1021/jp000679t.

    Article  CAS  Google Scholar 

  20. Jana NR, Gearheart L, Obare SO, Murphy CJ. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir. 2002;18(3):922–7. doi:10.1021/la0114530.

    Article  CAS  Google Scholar 

  21. Tsung CK, Kou XS, Shi QH, Zhang JP, Yeung MH, Wang JF, et al. Selective shortening of single-crystalline gold nanorods by mild oxidation. J Am Chem Soc. 2006;128(16):5352–3. doi:10.1021/ja060447t.

    Article  CAS  Google Scholar 

  22. Chandrasekar G, Mougin K, Haidara H, Vidal L, Gnecco E. Shape and size transformation of gold nanorods (GNRs) via oxidation process: a reverse growth mechanism. Appl Surf Sci. 2011;257(9):4175–9. doi:10.1016/j.apsusc.2010.12.015.

    Article  CAS  Google Scholar 

  23. Vigderman L, Zubarev ER. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater. 2013;25(8):1450–7. doi:10.1021/cm303661d.

    Article  CAS  Google Scholar 

  24. Edgar JA, McDonagh AM, Cortie MB. Formation of gold nanorods by a stochastic “Popcorn” mechanism. ACS Nano. 2012;6(2):1116–25. doi:10.1021/nn203586j.

    Article  CAS  Google Scholar 

  25. Akbulut O, Mace CR, Martinez RV, Kumar AA, Nie ZH, Patton MR, et al. Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett. 2012;12(8):4060–4. doi:10.1021/nl301452x.

    Article  CAS  Google Scholar 

  26. Li SA, Chang Z, Liu JF, Bai L, Luo L, Sun XM. Separation of gold nanorods using density gradient ultracentrifugation. Nano Res. 2011;4(8):723–8. doi:10.1007/s12274-011-0128-7.

    Article  CAS  Google Scholar 

  27. Gordel M, Olesiak-Banska J, Matczyszyn K, Nogues C, Pawlik K, Buckle M, Samoc M. Shape and size separation of gold nanoparticles using glucose gradient density. In: Andrews DL, Nunzi JM, Ostendorf A, editors. Nanophotonics Iv, vol 8424. Proceedings of SPIE. Proceedings of the SPIE, Brussels, Belgium; 2012. pp 1–7. doi:84242f.10.1117/12.922097.

  28. Runyon JR, Goering A, Yong KT, Williams SKR. Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface plasmon resonance. Anal Chem. 2013;85(2):940–8.

    Article  CAS  Google Scholar 

  29. Gigault J, Cho TJ, MacCuspie RI, Hackley VA. Gold nanorod separation and characterization by asymmetric-flow field flow fractionation with UV-Vis detection. Anal Bioanal Chem. 2013;405(4):1191–202. doi:10.1007/s00216-012-6547-9.

    Article  CAS  Google Scholar 

  30. Nguyen TM, Gigault J, Hackley VA. PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-Vis detection. Anal Bioanal Chem. 2014;406(6):1651–9. doi:10.1007/s00216-013-7318-y.

    Article  CAS  Google Scholar 

  31. Nguyen T, Liu J, Hackley V. Fractionation and characterization of high aspect ratio gold nanorods using asymmetric-flow field flow fractionation and single particle inductively coupled plasma mass spectrometry. Chromatography. 2015;2(3):422.

    Article  Google Scholar 

  32. Gigault J, Pettibone JM, Schmitt C, Hackley VA. Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta. 2014;809:9–24. doi:10.1016/j.aca.2013.11.021.

    Article  CAS  Google Scholar 

  33. Lin WH, Lu YH, Hsu YJ. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. J Colloid Interface Sci. 2014;418:87–94. doi:10.1016/j.jcis.2013.11.082.

    Article  CAS  Google Scholar 

  34. Chu HC, Kuo CH, Huang MH. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg Chem. 2006;45(2):808–13. doi:10.1021/ic051758s.

    Article  CAS  Google Scholar 

  35. El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, et al. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur Phys J Spec Top. 2008;153(1):361–4. doi:10.1140/epjst/e2008-00462-0.

    Article  Google Scholar 

  36. Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B. 2001;105(19):4065–7. doi:10.1021/jp0107964.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research performed in part at the NIST Center for Nanoscale Science and Technology, and funded in part by the NIST Nanomanufacturing Initiative through the Nanoparticle Manufacturing Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent A. Hackley.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.M., Pettibone, J.M., Gigault, J. et al. In situ monitoring, separation, and characterization of gold nanorod transformation during seed-mediated synthesis. Anal Bioanal Chem 408, 2195–2201 (2016). https://doi.org/10.1007/s00216-016-9366-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9366-6

Keywords

Navigation