Skip to main content
Log in

2D material–based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The boom in nanotechnology brings new insights into the development of artificial enzymes (nanozymes) with ease of modification, lower manufacturing cost, and higher catalytic stability than natural enzymes. Among various nanomaterials, two-dimensional (2D) nanomaterials exhibit promising enzyme-like properties for a plethora of bioapplications owing to their unique physicochemical characteristics of tuneable composition, ultrathin thickness, and huge specific surface area. Herein, we review the recent advances in several 2D material–based nanozymes, such as carbonaceous nanosheets, metal–organic frameworks (MOFs), transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and transition metal oxides (TMOs), clarify the mechanisms of peroxidase (POD)-mimicking catalytic behaviors, and overview the potential bioapplications of 2D nanozymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang D, Ni D, Rosenkrans Z, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang G, Yi L, Hao L, Shuang H, Xiao Z, Wei Z. DNAzyme conjugated nanomaterials for biosensing applications. Rev Anal Chem. 2014;33(3):201–12.

    Google Scholar 

  3. Korshunova TY, Bakaeva MD, Kuzina EV, Rafikova GF, Chetverikov SP, Chetverikova DV, et al. Role of bacteria of the genus pseudomonas in the sustainable development of agricultural systems and environmental protection. Appl Biochem Microbiol. 2021;57(3):281–96.

    Article  CAS  Google Scholar 

  4. DelRe C, Jiang Y, Kang P, Kwon J, Hall A, Jayapurna I, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature. 2021;592(7855):558–63.

    Article  CAS  PubMed  Google Scholar 

  5. Lee S, Choi D, Kuk S, Park C. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed. 2018;57(27):7958–85.

    Article  CAS  Google Scholar 

  6. Wang L, Xue J, Chang J, Yu C, Dai H, Yao Z, et al. Fe, N-doped carbon as peroxidase mimics for single-use colorimetric bioassays. J Mater Sci. 2021;56(24):13579–89.

    Article  CAS  Google Scholar 

  7. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93.

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Li P, Hu X, Chen H, Tang Y, Zhu Y, et al. Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe2+ ions. ACS Appl Nano Mater. 2021;4(8):8302–13.

    Article  CAS  Google Scholar 

  9. Qian Q, Hu Q, Li L, Shi P, Zhou J, Kong J, et al. Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. Sens Actuators, B. 2018;257:23–8.

    Article  CAS  Google Scholar 

  10. Zhou R, Wang H, Chang J, Yu C, Dai H, Chen Q, et al. Ammonium intercalation induced expanded 1T-rich molybdenum diselenides for improved lithium ion storage. ACS Appl Mater Interfaces. 2021;13(15):17459–66.

    Article  CAS  PubMed  Google Scholar 

  11. Mayorga-Martinez CC, Sofer Z, Pumera M. Binary phosphorene redox behavior in oxidoreductase enzymatic systems. ACS Nano. 2019;13(11):13217–24.

    Article  CAS  PubMed  Google Scholar 

  12. Dai H, Wang L, Zhao Y, Xue J, Zhou R, Yu C, et al. Recent advances in molybdenum-based materials for lithium-sulfur batteries. Research. 2021;2021:5130420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Zhou R, Li D, Zhang L, Ren G, Wang L, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano. 2021;15(6):9690–700.

    Article  PubMed  Google Scholar 

  14. Pei Y, Zhang X, Hui Z, Zhou J, Huang X, Sun G, et al. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano. 2021;15(3):3996–4017.

    Article  CAS  PubMed  Google Scholar 

  15. Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  16. Feng D, Gu Z, Li J, Jiang H, Wei Z, Zhou H. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed. 2012;51(41):10453–6.

    Article  Google Scholar 

  17. Peng J, Weng J. Enhanced peroxidase-like activity of MoS2/graphene oxide hybrid with light irradiation for glucose detection. Biosens Bioelectron. 2017;89(Pt 1):652–8.

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Sun K, Li P, Fan X, Sun J, Ai S. DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing. Nanoscale. 2013;5(22):10982–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gan Y, Hu N, He C, Zhou S, Tu J, Liang T, et al. MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron. 2019;130:254–61.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Acc Mater Res. 2021;2(7):534–47.

    Article  CAS  Google Scholar 

  21. Thangudu S, Su C-H. Peroxidase mimetic nanozymes in cancer phototherapy: Progress and perspectives. Biomolecules. 2021;11(7):1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xin Q, Shah H, Nawaz A, Xie W, Akram M, Batool A, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31(45):1804838.

    Article  CAS  Google Scholar 

  23. Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 2021;13(1):154.

    Article  CAS  Google Scholar 

  24. Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B. 2021;9:6939–57.

    Article  CAS  PubMed  Google Scholar 

  25. Cai S, Yang R. Two-dimensional nanomaterials with enzyme-like properties for biomedical applications. Front Chem. 2020;8:565940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Article  CAS  PubMed  Google Scholar 

  27. Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B. 2020;8(44):10065–86.

    Article  CAS  PubMed  Google Scholar 

  28. Routoula E, Patwardhan SV. Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol. 2020;54(2):647–64.

    Article  CAS  PubMed  Google Scholar 

  29. Suter JL, Sinclair RC, Coveney PV. Principles governing control of aggregation and dispersion of graphene and graphene oxide in polymer melts. Adv Mater. 2020;32(36):2003213.

    Article  CAS  Google Scholar 

  30. Hua L, Shi P, Li L, Yu C, Chen R, Gong Y, et al. General metal-ion mediated method for functionalization of graphene fiber. ACS Appl Mater Interfaces. 2017;9(42):37022–30.

    Article  CAS  PubMed  Google Scholar 

  31. Yu C, An J, Zhou R, Xu H, Zhou J, Chen Q, et al. Microstructure design of carbonaceous fibers: a promising strategy toward high-performance weaveable/wearable supercapacitors. Small. 2020;16(25):2000653.

    Article  CAS  Google Scholar 

  32. Li L, Shi P, Hua L, An J, Gong Y, Chen R, et al. Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale. 2018;10(1):118–23.

    Article  CAS  Google Scholar 

  33. Hui Z, Chen R, Chang J, Gong Y, Zhang X, Xu H, et al. Solution-processed sensing textiles with adjustable sensitivity and linear detection range enabled by twisting structure. ACS Appl Mater Interfaces. 2020;12(10):12155–64.

    Article  CAS  PubMed  Google Scholar 

  34. Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjugate Chem. 2019;30(5):1273–96.

    Article  CAS  Google Scholar 

  35. Yu C, Xu H, Gong Y, Chen R, Hui Z, Zhao X, et al. The Jahn-Teller effect for amorphization of molybdenum trioxide towards high-performance fiber supercapacitor. Research. 2021;2021:6742715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu H, He W, Li Z, Chi J, Jiang J, Huang K, et al. Revisiting charge storage mechanism of reduced graphene oxide in zinc ion hybrid capacitor beyond the contribution of oxygen-containing groups. Adv Funct Mater. 2022;2022:2111131.

    Article  Google Scholar 

  37. Yu C, An J, Chen Q, Zhou J, Huang W, Kim Y-J, et al. Recent advances in design of flexible electrodes for miniaturized supercapacitors. Small Methods. 2020;4(6):1900824.

    Article  CAS  Google Scholar 

  38. Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed. 2015;54(24):7176–80.

    Article  CAS  Google Scholar 

  39. Zhu J, Tu W, Pan H, Zhang H, Liu B, Cheng Y, et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano. 2020;14(5):5780–7.

    Article  CAS  PubMed  Google Scholar 

  40. Hu Y, Gao X, Zhu Y, Muhammad F, Tan S, Cao W, et al. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem Mater. 2018;30(18):6431–9.

    Article  CAS  Google Scholar 

  41. Kim M, Cho S, Joo S, Lee J, Kwak S, Kim M, et al. N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano. 2019;13(4):4312–21.

    Article  CAS  PubMed  Google Scholar 

  42. Tian J, Liu Q, Asiri AM, Qusti AH, Al-Youbi AO, Sun X. Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale. 2013;5(23):11604–9.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng G, Duan M, Xu Y, Ge F, Wang W. Platinum (II)-doped graphitic carbon nitride with enhanced peroxidase-like activity for detection of glucose and H2O2. Spectrochim Acta, Part A. 2020;241:118649.

    Article  CAS  Google Scholar 

  44. Wu N, Wang Y-T, Wang X-Y, Guo F-N, Wen H, Yang T, et al. Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing. Anal Chim Acta. 2019;1091:69–75.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu J, Nie W, Wang Q, Li J, Li H, Wen W, et al. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon. 2018;129:29–37.

    Article  CAS  Google Scholar 

  46. Peng Y, Yu X, Yin W, Dong W, Peng J, Wang T. Colorimetric assay using mesoporous Fe-doped graphitic carbon nitride as a peroxidase mimetic for the determination of hydrogen peroxide and glucose. ACS Appl Bio Mater. 2020;3(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  47. Jin X, Chen J, Zeng X, Xu L, Wu Y, Fu F. A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens Bioelectron. 2019;128:45–51.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed A, John P, Nawaz MH, Hayat A, Nasir M. Zinc-doped mesoporous graphitic carbon nitride for colorimetric detection of hydrogen peroxide. ACS Appl Nano Mater. 2019;2(8):5156–68.

    Article  CAS  Google Scholar 

  49. Lan G, Ni K, Xu Z, Veroneau S, Song Y, Lin W. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc. 2018;140(17):5670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Komkova M, Karyakina E, Karyakin A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc. 2018;140(36):11302–7.

    Article  CAS  PubMed  Google Scholar 

  51. Wang XY, Jiang XQ, Wei H. Phosphate-responsive 2D-metal-organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J Mater Chem B. 2020;8(31):6905–11.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Li G, Wu D, Li X, Hu N, Chen J, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron. 2019;137:178–98.

    Article  CAS  PubMed  Google Scholar 

  53. Feng D, Chung W, Wei Z, Gu Z, Jiang H, Chen Y, et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J Am Chem Soc. 2013;135(45):17105–10.

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, Shu Y, Li H, Xu Q, Hu X. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta. 2018;189:254–61.

    Article  CAS  PubMed  Google Scholar 

  55. Qin L, Wang X, Liu Y, Wei H. 2D-metal-organic-framework-nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal Chem. 2018;90(16):9983–9.

    Article  CAS  PubMed  Google Scholar 

  56. Shi M, Xu M, Gu Z. Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal Chim Acta. 2019;1079:164–70.

    Article  CAS  PubMed  Google Scholar 

  57. Wang S, Xu D, Ma L, Qiu J, Wang X, Dong Q, et al. Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Anal Bioanal Chem. 2018;410(27):7145–52.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Zhao M, Ping J, Chen B, Cao X, Huang Y, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater. 2016;28(21):4149–55.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem. 2017;89(21):11552–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang W, Zhang Y, Qiu J, Zhao Z, Liu N. Topological structures of transition metal dichalcogenides: a review on fabrication, effects, applications, and potential. InfoMat. 2021;3(2):133–54.

    Article  CAS  Google Scholar 

  61. Wang L, Xu D, Jiang L, Gao J, Tang Z, Xu Y, et al. Transition metal dichalcogenides for sensing and oncotherapy: status, challenges, and perspective. Adv Funct Mater. 2021;31(5):2004408.

    Article  CAS  Google Scholar 

  62. Huang Y, Guo J, Kang Y, Ai Y, Li C. Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale. 2015;7(46):19358–76.

    Article  CAS  PubMed  Google Scholar 

  63. Tan C, Lai Z, Zhang H. Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv Mater. 2017;29(37):1701392.

    Article  Google Scholar 

  64. Huang L, Zhu W, Zhang W, Chen K, Wang J, Wang R, et al. Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim Acta. 2017;185(1):7.

    Article  Google Scholar 

  65. Nirala N, Pandey S, Bansal A, Singh V, Mukherjee B, Saxena P, et al. Different shades of cholesterol: gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens Bioelectron. 2015;74:207–13.

    Article  CAS  PubMed  Google Scholar 

  66. Yu J, Ma D, Mei L, Gao Q, Yin W, Zhang X, et al. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J Mater Chem B. 2018;6(3):487–98.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Qi K, Yu S, Jia G, Cheng Z, Zheng L, et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom co-MoS2. Nano-Micro Lett. 2019;11(1):102.

    Article  Google Scholar 

  68. Dresp S, Ngo TT, Klingenhof M, Brückner S, Hauke P, Strasser P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ Sci. 2020;13(6):1725–9.

    Article  CAS  Google Scholar 

  69. Lin Y, Wang H, Peng C, Bu L, Chiang C, Tian K, et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small. 2020;16(38):2002426.

    Article  CAS  Google Scholar 

  70. Fan G, Li F, Evans D, Duan X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev. 2014;43(20):7040–66.

    Article  CAS  PubMed  Google Scholar 

  71. Zhan T, Kang J, Li X, Pan L, Li G, Hou W. NiFe layered double hydroxide nanosheets as an efficiently mimic enzyme for colorimetric determination of glucose and H2O2. Sens Actuators, B. 2018;255:2635–42.

    Article  CAS  Google Scholar 

  72. Zhao J, Xie Y, Yuan W, Li D, Liu S, Zheng B, et al. A hierarchical Co-Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity. J Mater Chem B. 2013;1(9):1263–9.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Y, Tian J, Liu S, Wang L, Qin X, Lu W, et al. Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst. 2012;137(6):1325–8.

    Article  CAS  PubMed  Google Scholar 

  74. Su L, Yu X, Qin W, Dong W, Wu C, Zhang Y, et al. One-step analysis of glucose and acetylcholine in water based on the intrinsic peroxidase-like activity of Ni/Co LDHs microspheres. J Mater Chem B. 2017;5(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  75. Sun Y, Xu H, Zhao X, Hui Z, Yu C, Wang L, et al. Identifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior substrate affinity for sensitive detection of hydrogen peroxide. J Mater Chem B. 2019;7(40):6232–7.

    Article  CAS  PubMed  Google Scholar 

  76. Sun Y, Xu H, Wang L, Yu C, Zhou J, Chen Q, et al. Ultrathin NiMn layered double hydroxide nanosheets with a superior peroxidase mimicking performance to natural HRP for disposable paper-based bioassays. J Mater Chem B. 2021;9(4):983–91.

    Article  CAS  PubMed  Google Scholar 

  77. Fan X, Yang F, Nie C, Ma L, Cheng C, Haag R. Biocatalytic nanomaterials: a new pathway for bacterial disinfection. Adv Mater. 2021;33(33):2100637.

    Article  CAS  Google Scholar 

  78. Ganganboina AB, Doong RA. The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione. Sens Actuators, B. 2018;273:1179–86.

    Article  CAS  Google Scholar 

  79. Ghosh S, Roy P, Karmodak N, Jemmis E, Mugesh G. Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew Chem Int Ed. 2018;57(17):4510–5.

    Article  CAS  Google Scholar 

  80. Liu Y, Qing Y, Jing L, Zou W, Guo R. Platinum–copper bimetallic colloid nanoparticle cluster nanozymes with multiple enzyme-like activities for scavenging reactive oxygen species. Langmuir. 2021;37(24):7364–72.

    Article  CAS  PubMed  Google Scholar 

  81. Zhao Q, Shen T, Liu Y, Hu X, Zhao W, Ma Z, et al. Universal nanoplatform for formaldehyde detection based on the oxidase-mimicking activity of MnO2 nanosheets and the in situ catalysis-produced fluorescence species. J Agric Food Chem. 2021;69(26):7303–12.

    Article  CAS  PubMed  Google Scholar 

  82. Han L, Shi J, Liu A. Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sens Actuators, B. 2017;252:919–26.

    Article  CAS  Google Scholar 

  83. Liu J, Meng L, Fei Z, Dyson P, Jing X, Liu X. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron. 2017;90:69–74.

    Article  CAS  PubMed  Google Scholar 

  84. Han L, Zhang H, Chen D, Li F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv Funct Mater. 2018;28(17):1800018.

    Article  Google Scholar 

  85. Tang W, Fan W, Zhang W, Yang Z, Li L, Wang Z, et al. Wet/Sono-chemical synthesis of enzymatic two-dimensional MnO2 nanosheets for synergistic catalysis-enhanced phototheranostics. Adv Mater. 2019;31(19):1900401.

    Article  Google Scholar 

  86. Li W, Liu Z, Liu C, Guan Y, Ren J, Qu X. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew Chem Int Ed. 2017;56(44):13661–5.

    Article  CAS  Google Scholar 

  87. Dutta S, Ray C, Mallick S, Sarkar S, Sahoo R, Negishi Y, et al. A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C. 2015;119(41):23790–800.

    Article  CAS  Google Scholar 

  88. Qiao F, Wang J, Ai S, Li L. As a new peroxidase mimetics: the synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sens Actuators, B. 2015;216:418–27.

    Article  CAS  Google Scholar 

  89. Xing Z, Tian J, Asiri A, Qusti A, Al-Youbi A, Sun X. Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: a highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens Bioelectron. 2014;52:452–7.

    Article  CAS  PubMed  Google Scholar 

  90. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, et al. Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta. 2013;796:92–100.

    Article  CAS  PubMed  Google Scholar 

  91. Pogacean F, Socaci C, Pruneanu S, Biris AR, Coros M, Magerusan L, et al. Graphene based nanomaterials as chemical sensors for hydrogen peroxide – a comparison study of their intrinsic peroxidase catalytic behavior. Sens Actuators, B. 2015;213:474–83.

    Article  CAS  Google Scholar 

  92. Dong Y, Zhang H, Rahman Z, Su L, Chen X, Hu J, et al. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale. 2012;4(13):3969–76.

    Article  CAS  PubMed  Google Scholar 

  93. Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, et al. In situ controllable growth of CoFe2O4 ferrite nanocubes on graphene for colorimetric detection of hydrogen peroxide. J Mater Chem A. 2013;1(13):4352–7.

    Article  CAS  Google Scholar 

  94. Guo Y, Li J, Dong S. Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose. Sens Actuators, B. 2011;160(1):295–300.

    Article  CAS  Google Scholar 

  95. Lin T, Zhong L, Wang J, Guo L, Wu H, Guo Q, et al. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. Biosens Bioelectron. 2014;59:89–93.

    Article  CAS  PubMed  Google Scholar 

  96. Deng L, Chen C, Zhu C, Dong S, Lu H. Multiplexed bioactive paper based on GO@SiO2@CeO2 nanosheets for a low-cost diagnostics platform. Biosens Bioelectron. 2014;52:324–9.

    Article  CAS  PubMed  Google Scholar 

  97. Qiao F, Qi Q, Wang Z, Xu K, Ai S. MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sens Actuators, B. 2016;229:379–86.

    Article  CAS  Google Scholar 

  98. Chen M, Yang B, Zhu J, Liu H, Zhang X, Zheng X, et al. FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Mater Sci Eng, C. 2018;90:610–20.

    Article  CAS  Google Scholar 

  99. Liu Y, Zheng Y, Chen Z, Qin Y, Guo R. High-performance integrated enzyme cascade bioplatform based on protein-BiPt nanochain@graphene oxide hybrid guided one-pot self-assembly strategy. Small. 2019;15(12):1804987.

    Article  Google Scholar 

  100. Chen X, Su B, Cai Z, Chen X, Oyama M. PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H2O2. Sens Actuators, B. 2014;201:286–92.

    Article  CAS  Google Scholar 

  101. Chen J, Ge J, Zhang L, Li Z, Qu L. Poly(styrene sulfonate) and Pt bifunctionalized graphene nanosheets as an artificial enzyme to construct a colorimetric chemosensor for highly sensitive glucose detection. Sens Actuators, B. 2016;233:438–44.

    Article  Google Scholar 

  102. Chang Q, Tang H. Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta. 2014;181(5–6):527–34.

    Article  CAS  Google Scholar 

  103. Li L, Zeng C, Ai L, Jiang J. Synthesis of reduced graphene oxide-iron nanoparticles with superior enzyme-mimetic activity for biosensing application. J Alloys Compd. 2015;639:470–7.

    Article  CAS  Google Scholar 

  104. Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X. Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale. 2017;9(47):18699–710.

    Article  CAS  PubMed  Google Scholar 

  105. Chen H, Qiu Q, Sharif S, Ying S, Wang Y, Ying Y. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl Mater Interfaces. 2018;10(28):24108–15.

    Article  CAS  PubMed  Google Scholar 

  106. Chen Q, Chen J, Gao C, Zhang M, Chen J, Qiu H. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst. 2015;140(8):2857–63.

    Article  CAS  PubMed  Google Scholar 

  107. Li B, Luo H, Lei J, Li N. Hemin-functionalized MoS2 nanosheets: enhanced peroxidase-like catalytic activity with a steady state in aqueous solution. RSC Adv. 2014;4(46):24256–62.

    Article  CAS  Google Scholar 

  108. Liu H, Gu C, Xiong W, Zhang M. A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics. Sens Actuators, B. 2015;209:670–6.

    Article  CAS  Google Scholar 

  109. Guo X, Wang Y, Wu F, Ni Y, Kokot S. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst. 2015;140(4):1119–26.

    Article  CAS  PubMed  Google Scholar 

  110. Lin T, Zhong L, Guo L, Fu F, Chen G. Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale. 2014;6(20):11856–62.

    Article  CAS  PubMed  Google Scholar 

  111. Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, et al. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron. 2014;62:302–7.

    Article  CAS  PubMed  Google Scholar 

  112. Liu Q, Jiang Y, Zhang L, Zhou X, Lv X, Ding Y, et al. The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O2. Mater Sci Eng, C. 2016;65:109–15.

    Article  CAS  Google Scholar 

  113. Li Z, Liu X, Liang X, Zhong J, Guo L, Fu F. Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO3 nanosheets. Talanta. 2019;204:278–84.

    Article  CAS  PubMed  Google Scholar 

  114. Yu J, Ma X, Yin W, Gu Z. Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv. 2016;6(84):81174–83.

    Article  CAS  Google Scholar 

  115. Zhao K, Gu W, Zheng S, Zhang C, Xian Y. SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta. 2015;141:47–52.

    Article  CAS  PubMed  Google Scholar 

  116. Cai S, Han Q, Qi C, Lian Z, Jia X, Yang R, et al. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale. 2016;8(6):3685–93.

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Zhang X, Luo Z, Huang X, Tan C, Li H, et al. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale. 2014;6(21):12340–4.

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y, Liu J, Jiang J, Zhong W. Cobalt oxyhydroxide nanoflakes with intrinsic peroxidase catalytic activity and their application to serum glucose detection. Anal Bioanal Chem. 2017;409(17):4225–32.

    Article  CAS  PubMed  Google Scholar 

  119. Guo Y, Liu X, Wang X, Iqbal A, Yang C, Liu W, et al. Carbon dot/NiAl-layered double hydroxide hybrid material: facile synthesis, intrinsic peroxidase-like catalytic activity and its application. RSC Adv. 2015;5(116):95495–503.

    Article  CAS  Google Scholar 

  120. Chen L, Sun B, Wang X, Qiao F, Ai S. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in l-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose. J Mater Chem B. 2013;1(17):2268–74.

    Article  CAS  PubMed  Google Scholar 

  121. Yuan J, Cen Y, Kong X, Wu S, Liu C, Yu R, et al. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces. 2015;7(19):10548–55.

    Article  CAS  PubMed  Google Scholar 

  122. Wang H, Wan K, Shi X. Recent advances in nanozyme research. Adv Mater. 2019;31(45):1805368.

    Article  CAS  Google Scholar 

  123. Chen M, Deng G, He Y, Li X, Liu W, Wang W, et al. Ultrasound-enhanced generation of reactive oxygen species for MRI-guided tumor therapy by the Fe@Fe3O4-based peroxidase-mimicking nanozyme. ACS Appl Bio Mater. 2020;3(1):639–47.

    Article  CAS  PubMed  Google Scholar 

  124. Wu J, Yu Y, Cheng Y, Cheng C, Zhang Y, Jiang B, et al. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal–organic framework nanozyme for therapy. Angew Chem Int Ed. 2021;60(3):1227–34.

    Article  CAS  Google Scholar 

  125. Liu X, Huang L, Wang Y, Sun J, Yue T, Zhang W, et al. One-pot bottom-up fabrication of a 2D/2D heterojuncted nanozyme towards optimized peroxidase-like activity for sulfide ions sensing. Sens Actuators, B. 2020;306:127565.

    Article  CAS  Google Scholar 

  126. Tang Y, Hu Y, Yang Y, Liu B, Wu Y. A facile colorimetric sensor for ultrasensitive and selective detection of Lead(II) in environmental and biological samples based on intrinsic peroxidase-mimic activity of WS2 nanosheets. Anal Chim Acta. 2020;1106:115–25.

    Article  CAS  PubMed  Google Scholar 

  127. Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, Donald N, et al. A minimal cysteine motif required to activate the SKOR K+ channel of arabidopsis by the reactive oxygen species H2O2. J Biol Chem. 2010;285(38):29286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun B, Sun G, Xiao J, Chen R, Wang X, Wu Y, et al. Isorhamnetin inhibits H2O2-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem. 2012;113(2):473–85.

    Article  CAS  PubMed  Google Scholar 

  129. Kiruthiga PV, Shafreen RB, Pandian SK, Devi KP. Silymarin protection against major reactive oxygen species released by environmental toxins: exogenous H2O2 exposure in erythrocytes. Basic Clin Pharmacol Toxicol. 2007;100(6):414–9.

    Article  CAS  PubMed  Google Scholar 

  130. Sun X, Guo S, Liu Y, Sun S. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett. 2012;12(9):4859–63.

    Article  CAS  PubMed  Google Scholar 

  131. Ding S, Lyu Z, Fang L, Li T, Zhu W, Li S, et al. Single-atomic site catalyst with Heme enzymes-like active sites for electrochemical sensing of hydrogen peroxide. Small. 2021;17(25):2100664.

    Article  CAS  Google Scholar 

  132. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  133. Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, et al. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun. 2020;56(93):14553–69.

    Article  CAS  Google Scholar 

  134. Kitte SA, Gao W, Zholudov YT, Qi L, Nsabimana A, Liu Z, et al. Stainless steel electrode for sensitive luminol electrochemiluminescent detection of H2O2, glucose, and glucose oxidase activity. Anal Chem. 2017;89(18):9864–9.

    Article  CAS  PubMed  Google Scholar 

  135. Sun Y, Li P, Zhu Y, Zhu X, Zhang Y, Liu M, et al. In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens Bioelectron. 2021;194:113600.

    Article  CAS  PubMed  Google Scholar 

  136. Alizadeh N, Salimi A, Hallaj R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens Actuators, B. 2019;288:44–52.

    Article  CAS  Google Scholar 

  137. Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth Biol. 2020;9(6):1226–33.

    Article  CAS  PubMed  Google Scholar 

  138. Wang X, Xu Y, Cheng N, Wang X, Huang K, Luo Y. Recent advances in nucleic acid modulation for functional nanozyme. Catalysts. 2021;11(5):638.

    Article  CAS  Google Scholar 

  139. Wang Q, Lei J, Deng S, Zhang L, Ju H. Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem Commun. 2013;49(9):916–8.

    Article  CAS  Google Scholar 

  140. Liu M, Zhao H, Chen S, Yu H, Quan X. Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano. 2012;6(4):3142–51.

    Article  CAS  PubMed  Google Scholar 

  141. Cohen L, Cui N, Cai Y, Garden PM, Li X, Weitz DA, et al. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano. 2020;14(8):9491–501.

    Article  CAS  PubMed  Google Scholar 

  142. Tripathi P, Kumar A, Sachan M, Gupta S, Nara S. Aptamer-gold nanozyme based competitive lateral flow assay for rapid detection of CA125 in human serum. Biosens Bioelectron. 2020;165:112368.

    Article  CAS  PubMed  Google Scholar 

  143. Yan X, Song Y, Wu X, Zhu C, Su X, Du D, et al. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale. 2017;9(6):2317–23.

    Article  CAS  PubMed  Google Scholar 

  144. Angerani S, Winssinger N. Sense-and-release logic-gated molecular network responding to dimeric cell surface proteins. J Am Chem Soc. 2020;142(28):12333–40.

    Article  CAS  PubMed  Google Scholar 

  145. Xie J, Cheng D, Zhou Z, Pang X, Liu M, Yin P, et al. Hydrogen peroxide sensing in body fluids and tumor cells via in situ produced redox couples on two-dimensional holey CuCo2O4 nanosheets. Microchim Acta. 2020;187(8):469.

    Article  CAS  Google Scholar 

  146. Abarghoei S, Fakhri N, Borghei Y, Hosseini M, Ganjali M. A colorimetric paper sensor for citrate as biomarker for early stage detection of prostate cancer based on peroxidase-like activity of cysteine-capped gold nanoclusters. Spectrochim Acta, Part A. 2019;210:251–9.

    Article  CAS  Google Scholar 

  147. Tao Y, Lin Y, Huang Z, Ren J, Qu X. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater. 2013;25(18):2594–9.

    Article  CAS  PubMed  Google Scholar 

  148. Maji S, Mandal A, Nguyen K, Borah P, Zhao Y. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces. 2015;7(18):9807–16.

    Article  CAS  PubMed  Google Scholar 

  149. Fang C, Deng Z, Cao G, Chu Q, Wu Y, Li X, et al. Co–Ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Adv Funct Mater. 2020;30(16):1910085.

    Article  CAS  Google Scholar 

  150. Liu Z, Wang F, Ren J, Qu X. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials. 2019;208:21–31.

    Article  CAS  PubMed  Google Scholar 

  151. Lin B, Chen H, Liang D, Lin W, Qi X, Liu H, et al. Acidic pH and high-H2O2 dual tumor microenvironment-responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Appl Mater Interfaces. 2019;11(12):11157–66.

    Article  PubMed  Google Scholar 

  152. Wang P, Shi Y, Zhang S, Huang X, Zhang J, Zhang Y, et al. Hydrogen peroxide responsive iron-based nanoplatform for multimodal imaging-guided cancer therapy. Small. 2019;15(4):1803791.

    Article  Google Scholar 

  153. Hu L, Sun W, Tang Y, Li S, Zhang B, Sun X, et al. Photothermal effect enhancing graphene quantum dots/semiconducting polymer/nanozyme-mediated cancer catalytic therapy. Carbon. 2021;176:148–56.

    Article  CAS  Google Scholar 

  154. Maji SK, Yu S, Chung K, Sekkarapatti RM, Lim JW, Wang J, et al. Synergistic nanozymetic activity of hybrid gold bipyramid–molybdenum disulfide core@shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl Mater Interfaces. 2018;10(49):42068–76.

    Article  CAS  PubMed  Google Scholar 

  155. Murugan C, Murugan N, Sundramoorthy AK, Sundaramurthy A. Nanoceria decorated flower-like molybdenum sulphide nanoflakes: an efficient nanozyme for tumour selective ROS generation and photo thermal therapy. Chem Commun. 2019;55(55):8017–20.

    Article  CAS  Google Scholar 

  156. Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16(4):369–84.

    Article  CAS  PubMed  Google Scholar 

  157. Yin W, Yu J, Lv F, Yan L, Zheng L, Gu Z, et al. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano. 2016;10(12):11000–11.

    Article  CAS  PubMed  Google Scholar 

  158. Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, et al. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv Mater. 2020;32(42):2002439.

    Article  CAS  Google Scholar 

  159. Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, et al. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano. 2019;13(5):5222–30.

    Article  CAS  PubMed  Google Scholar 

  160. Ji H, Dong K, Yan Z, Ding C, Chen Z, Ren J, et al. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small. 2016;12(45):6200–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21975123) and the Six Talent Peaks Project in Jiangsu Province (No. XCL-024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chen or Gengzhi Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Dai, H., Sun, Y. et al. 2D material–based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem 414, 2971–2989 (2022). https://doi.org/10.1007/s00216-022-03985-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03985-w

Keywords

Navigation