Skip to main content
Log in

On the Violation of Ohm’s Law for Bounded Interactions: a One Dimensional System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an infinite Hamiltonian system in one space dimension, given by a charged particle subjected to a constant electric field and interacting with an infinitely extended system of particles. We discuss conditions on the particle/medium interaction which are necessary for the charged particle to reach a finite limiting velocity. We assume that the background system is initially in an equilibrium Gibbs state and we prove that for bounded interactions the average velocity of the charged particle increases linearly in time. This statement holds for any positive intensity of the electric field, thus contradicting Ohm’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bahn, C., Park, Y.M., Yoo, H.J.: Nonequilibrium dynamics of infinite particle systems with infinite range interactions. J. Math. Phys. 40, 4337–4358 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boldrighini, C.: Bernoulli property for a one-dimensional system with localized interaction. Commun. Math. Phys. 103, 499–514 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Boldrighini, C., Cosimi, G.C., Frigio, S., Nogueira, A.: Convergence to a stationary state and diffusion for a charged particle in a standing medium. Probab. Theory Relat. Fields 80, 481–500 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Boldrighini, C., Pellegrinotti, A., Presutti, E., Sinai, Ya.G., Soloveychik, M.R.: Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics. Commun. Math. Phys. 101, 363–382 (1985)

    MathSciNet  Google Scholar 

  5. Boldrighini, C., Soloveitchik, M.: Drift and diffusion for a mechanical system. Probab. Theory Relat. Fields 103, 349–379 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Boldrighini, C., Soloveitchik, M.: On the Einstein relation for a mechanical system. Probab. Theory Relat. Fields 107, 493–515 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruneau, L., De Biévre, S.: A Hamiltonian model for linear friction in a homogeneous medium. Commun. Math. Phys. 229, 511–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buttà, P., Caglioti, E., Marchioro, C.: On the long time behavior of infinitely extended systems of particles interacting via Kac potentials. J. Stat. Phys. 108, 317–339 (2002)

    Article  MathSciNet  Google Scholar 

  9. Buttà, P., Caglioti, E., Marchioro, C.: On the motion of a charged particle interacting with an infinitely extended system. Commun. Math. Phys. 233, 545–569 (2003)

    MathSciNet  Google Scholar 

  10. Caglioti, E., Marchioro, C.: On the long time behavior of a particle in an infinitely extended system in one dimension. J. Stat. Phys. 106, 663–680 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caglioti, E., Marchioro, C., Pulvirenti, M.: Non-equilibrium dynamics of three-dimensional infinite particle systems. Commun. Math. Phys. 215, 25–43 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calderoni, P., Dürr, D.: The Smoluchowski limit for a simple mechanical model. J. Stat. Phys. 55, 695–738 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Dobrushin, R.L., Fritz, J.: Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction. Commun. Math. Phys. 55, 275–292 (1977)

    MATH  Google Scholar 

  14. Fritz, J., Dobrushin, R.L.: Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Commun. Math. Phys. 57, 67–81 (1977)

    Google Scholar 

  15. Landau, L.D., Lifshitz, E.M.: Physical Kinetics, Course of Theoretical Physics, Vol. 10. Oxford, New York, Frankfurt: Pergamon Press, 1981

  16. Pellegrinotti, A., Sidoravicius, V., Vares, M.E.: Stationary state and diffusion for a charged particle in a one-dimensional medium with lifetimes. Teor. Veroyatnost. i Primenen. 44, 796–825 (1999); translation in Theory Probab. Appl. 44, 697–721 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Piasecki, J., Wajnryb, E.: Long-time behavior of the Lorentz electron gas in a constant, uniform electric field. J. Stat. Phys. 21, 549–559 (1979)

    Google Scholar 

  18. Ruelle, D.: Statistical Mechanics. Rigorous Results. New York-Amsterdam: W.A. Benjamin, Inc., 1969

  19. Sidoravicius, V., Triolo, L., Vares, M.E.: Mixing properties for mechanical motion of a charged particle in a random medium. Commun. Math. Phys. 219, 323–355 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sinai, Ya.G., Soloveychik, M.R.: One-dimensional classical massive particle in the ideal gas. Commun. Math. Phys. 104, 423–443 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Buttà.

Additional information

Communicated by J.L. Lebowitz

Work partially supported by the GNFM-INDAM and the Italian Ministry of the University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttà, P., Caglioti, E. & Marchioro, C. On the Violation of Ohm’s Law for Bounded Interactions: a One Dimensional System. Commun. Math. Phys. 249, 353–382 (2004). https://doi.org/10.1007/s00220-004-1114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1114-7

Keywords

Navigation