Skip to main content
Log in

Algebro-Geometric Solution of the Discrete KP Equation over a Finite Field out of a Hyperelliptic Curve

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We transfer the algebro-geometric method of construction of solutions of the discrete KP equation to the finite field case. We emphasize the role of the Jacobian of the underlying algebraic curve in construction of the solutions. We illustrate in detail the procedure on example of a hyperelliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric approach to nonlinear integrable equations. Berlin: Springer-Verlag, 1994

  2. Białecki, M.: Methods of algebraic geometry over finite fields in construction of integrable cellular automata. PhD dissertation, Warsaw University, Institute of Theoretical Physics, 2003

  3. Białecki, M., Doliwa, A.: The discrete KP and KdV equations over finite fields. Theor. Math. Phys. 137, 1412–1418 (2003)

    Article  Google Scholar 

  4. Bobenko, A., Bordemann, M., Gunn, Ch., Pinkall, U., On two integrable cellular automata. Commun. Math. Phys. 158, 127–134 (1993)

  5. Bruschi, M., Santini, P.M.: Cellular automata in 1+1, 2+1 and 3+1 dimensions, constants of motion and coherent structures. Physica D 70, 185–209 (1994)

    MATH  Google Scholar 

  6. Cornell, G., Silverman, J.H. (eds.): Arithmetic geometry. New York: Springer-Verlag, 1986

  7. Doliwa, A., Białecki, M., Klimczewski, P.: The Hirota equation over finite fields: algebro-geometric approach and multisoliton solutions. J. Phys. A 36, 4827–4839 (2003)

    MATH  Google Scholar 

  8. Fokas, A.S., Papadopoulou, E.P., Saridakis, Y.G.: Soliton cellular automata. Physica D 41, 297–321 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley and Sons, 1978

  10. Hartshorne, R.: Algebraic geometry. New York: Springer-Verlag, 1977

  11. Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977)

    Google Scholar 

  12. Hirota, R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50, 3785–3791 (1981)

    Google Scholar 

  13. Koblitz, N.: Algebraic aspects of cryptography. Berlin: Springer-Verlag, 1998

  14. Krichever, I.M.: Algebraic curves and non-linear difference equations. Usp. Mat. Nauk 33, 215–216 (1978)

    MATH  Google Scholar 

  15. Krichever, I.M., Wiegmann, P., Zabrodin, A.: Elliptic solutions to difference non-linear equations and related many body problems. Commun. Math. Phys. 193, 373–396 (1998)

    Article  MATH  Google Scholar 

  16. Lang, S.: Abelian varieties. New York: Interscience Publishers Inc. 1958

  17. Lang, S.: Algebra. Reading, MA: Addison-Wesley, 1970

  18. Matsukidaira, J., Satsuma, J., Takahashi, D., Tokihiro, T., Torii, M.: Toda-type cellular automaton and its N-soliton solution. Phys. Lett. A 225, 287–295 (1997)

    Article  MATH  Google Scholar 

  19. Menezes, A.J., Wu, Y.H., Zuccherato, R.J.: An elementary introduction to hyperelliptic curves. Appendix in [13], pp. 151–178

  20. Milne, J.S.: Jacobian varieties. Chapter VII in [6], pp. 167–212

  21. Moreno, C.: Algebraic curves over finite fields. Cambridge: University Press, 1991

  22. Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation, and related nonlinear equations. Proceedings of the International Symposium on Algebraic Geometry (M. Nagata, ed.), Kinokuniya, Tokyo, 1978 pp. 115–153

  23. von Neumann, J.: The general and logical theory of automata. In: The collected works of John von Neumann (A.W. Taub, ed.), Vol. 5, New York: Pergamon Press, 1963

  24. Shafarevich, I.: Basic algebraic geometry. Heidelberg: Springer-Verlag, 1974

  25. Stichtenoth, H.: Algebraic function fields and codes. Berlin: Springer-Verlag, 1993

  26. Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59, 3514–3519 (1990)

    Google Scholar 

  27. Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)

    Article  Google Scholar 

  28. Ulam, S.: Random processes and transformations. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 30 August–6 September 1950 (P. A. Smith, O. Zariski, eds.), Providence, RI: AMS, 1952, pp. 264–275

  29. Wolfram, S.: Theory and application of cellular automata. Singapore: World Scientific, 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Doliwa.

Additional information

Communicated by L. Takhtajan

Acknowledgement The paper was partially supported by the University of Warmia and Mazury in Olsztyn under the grant 522-1307-0201 and by KBN grant 2 P03B 12622.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Białecki, M., Doliwa, A. Algebro-Geometric Solution of the Discrete KP Equation over a Finite Field out of a Hyperelliptic Curve. Commun. Math. Phys. 253, 157–170 (2005). https://doi.org/10.1007/s00220-004-1207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1207-3

Keywords

Navigation