Skip to main content
Log in

Generalized Inverse Mean Curvature Flows in Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike directions. In the null case, local existence of the flow is guaranteed. In the spacelike case, the uniformly expanding condition leaves a 1-parameter freedom, but for the whole family, the embedding functions satisfy a forward-backward parabolic system for which local existence does not hold in general. Nevertheless, we have obtained a generalization of the weak (distributional) formulation of this class of flows, generalizing the corresponding step of Huisken and Ilmanen’s proof of the Riemannian Penrose inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose R. (1973). Naked singularities. Ann. N. Y. Acad. Sci. 224: 125

    Article  ADS  Google Scholar 

  2. Gibbons, G.W.: Some comments on gravitational entropy and the inverse mean curvature flow. Class. Quantum Grav. 16, 1677 (1999); Chruściel, P.T., Simon, W. Towards the classification of static vacuum spacetimes with negative cosmological constant. J. Math. Phys. 42, 1779 (2001)

    Google Scholar 

  3. Horowitz, G.: The positive energy theorem and its extensions. In: Asymptotic behavior of mass and spacetime geometry, edited by F. Flaherty, Springer Lecture Notes in Physics 202, New York: Springer, 1984

  4. Karkowski J. and Malec E. (2005). The general Penrose inquality: lessons from numerical evidence. Acta Physica Polonica B36: 59

    ADS  MathSciNet  Google Scholar 

  5. Ben-Dov I. (2004). The Penrose inequality and apparent horizons. Phys. Rev. D 70: 124031

    Article  ADS  MathSciNet  Google Scholar 

  6. Hayward S.A. (1994). Quasi-localization of Bondi-Sachs energy-loss. Class. Quantum Grav. 11: 3037

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Malec E. and ÓMurchadha N. (1994). Trapped surfaces and the Penrose inequality in spherically symmetric geometries. Phys. Rev. D 49: 6931

    Article  ADS  MathSciNet  Google Scholar 

  8. Hayward S.A. (1996). Gravitational energy in spherical symmetry. Phys. Rev. D 53: 1938

    Article  ADS  MathSciNet  Google Scholar 

  9. Huisken G. and Ilmanen T. (2001). The inverse mean curvature flow and the Riemannian Penrose inequality. J. Diff. Geom. 59: 353

    MATH  MathSciNet  Google Scholar 

  10. Bray H. (2001). Proof of the Riemannian Penrose inequality using the Positive Mass Theorem. J. Diff. Geom. 59: 177

    MATH  MathSciNet  Google Scholar 

  11. Geroch R. (1973). Energy Extraction. Ann. N. Y. Acad. Sci. 224: 108

    Article  ADS  Google Scholar 

  12. Jang P.S. and Wald R. (1977). The positive energy conjecture and the cosmic censorship. J. Math. Phys. 18: 41

    Article  ADS  MathSciNet  Google Scholar 

  13. Hawking S.W. (1968). Gravitational radiation in an expanding universe. J. Math. Phys. 9: 598

    Article  Google Scholar 

  14. Hayward S.A. (1998). Inequalities relating area, energy, surface gravity and charge of black holes. Phys. Rev. Lett. 81: 4557

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Eardley D.M.: Global problems in numerical relativity. In: Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, Smarr, L.L., ed., Cambridge: Cambridge University Press, 1979, 127

  16. Malec E., Mars M. and Simon W. (2002). On the Penrose inequality for general horizons. Phys. Rev. Lett. 88: 121102

    Article  ADS  MathSciNet  Google Scholar 

  17. Frauendiener J. (2001). On the Penrose inequality. Phys. Rev. Lett. 87: 101101–1

    Article  ADS  MathSciNet  Google Scholar 

  18. Christodoulou D. and Klainerman S. (1993). The global nonlinear stability of Minkowski space. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  19. Klainerman S. and Nicoló F. (2003). The evolution problem in General Relativity. Birkhäuser, Boston

    MATH  Google Scholar 

  20. Christodoulou, D.: Mathematical problems of General Relativity Theory. Zürich lectures in advanced mathematics, EMS publishing house (to appear)

  21. Jost J. (2001). Riemannian Geometry and geometric analysis. 3rd ed., Berlin, Springer

    Google Scholar 

  22. Senovilla J.M.M. (2000). Super-energy tensors. Class. Quantum Grav. 17: 2799

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Hayward S.A. (2006). Gravitational radiation from dynamical black holes. Class. Quantum Grav. 23: L15

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Hayward S.A. (2004). Energy conservation for dynamical black holes. Phys. Rev. Lett. 93: 251101

    Article  ADS  MathSciNet  Google Scholar 

  25. Hayward S.A. (2003). Spatial and null infinity via advanced and retarded conformal factors. Phys. Rev. D 68: 104015

    Article  ADS  MathSciNet  Google Scholar 

  26. Malec, E., Mars, M., Simon, W.: On the Penrose inequality. In: Lobo A. et. al. (eds). Proceedings of the Spanish Relativity Meeting. Universitat de Barcelona, (2002) p. 253

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mars.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, H., Hayward, S., Mars, M. et al. Generalized Inverse Mean Curvature Flows in Spacetime. Commun. Math. Phys. 272, 119–138 (2007). https://doi.org/10.1007/s00220-007-0203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0203-9

Keywords

Navigation