Skip to main content

Advertisement

Log in

Recurrence for Discrete Time Unitary Evolutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \({\phi}\). In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \({\phi}\). We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Bound molecules in an interacting quantum walk. http://arxiv.org/abs/1105.1051v2 [quant-ph], 2011

  2. Ahlbrecht, A., Cedzich, C., Matjeschk, R., Scholz, V.B., Werner, A.H., Werner, R.F.: Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations. http://arxiv.org/abs/1201.4839v1 [quant-ph], 2012

  3. Ahlbrecht A., Scholz V.B., Werner A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52, 102201 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ahlbrecht A., Vogts H., Werner A.H., Werner R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  5. Allcock, G.R.: The time of arrival in quantum mechanics. Ann. Phys. (N.Y.) 53, 253–285, 286–310, 311–348 (1969)

    Google Scholar 

  6. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One dimentional quantum walks. In: 33rd Annual ACM STOC. ACM, NY, pp 60–69 (2001)

  7. Bach E., Coppersmith S., Goldschen M.P., Joynt R., Watrous J.: One-dimentional quantum walks with absorbing boundaries. J Comput. Syst. Sci. 69(4), 562–592 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brassard G.: Quantum computing: The end of classical cryptography?. SIGACT News 25, 15–21 (1994)

    Article  Google Scholar 

  9. Brezis, H.: New questions related to the topological degree. In: Etingof, P., Retakh, V., Singer, I.M. editors, The Unity of Mathematics, Volume 244 of Progress in Mathematics, Boston: Birkhäuser, 2006, pp. 137–154

  10. Cantero M.J., Grünbaum F.A., Moral L., Velázquez L.: Matrix-valued Szegő polynomials and quantum random walks. Comm. Pure Appl. Math. 63(4), 464–507 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cantero M.J., Grünbaum F.A., Moral L., Velázquez L.: One-dimensional quantum walks with one defect. Rev. Math. Phys. 24, 1250002 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cantero M.J., Moral L., Velázquez L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castrigiano D.P.L., Mutze U.: Repeated measurements in quantum theory. Phys. Rev. A. 30, 2210–2220 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  14. Feynman, R.: The Feynman Lecture of physics; III: Quantum Mechanics. Reading, MA: Addison-wesley, 1966

  15. Frostman O.: Potential d’équilibre et capacité des ensembles avec quelques applications a la theorie des fonctions. Medd. Lunds Univ. Mat. Sem. 3, 1–118 (1935)

    Google Scholar 

  16. Garnett J.B.: Bounded analytic functions. Academic Press, New York-London (1981)

    MATH  Google Scholar 

  17. : Bound states and scattered states for contraction semigroups. Acta Appl. Math. 4, 93–98 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grimmett G., Janson S., Scudo P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  19. Grünbaum, F.A., Velázquez, L.: The quantum walk of F. Riesz. In: Cucker, F., Krick, T., Pinkus, A., Szanto, A. (eds.) Proceedings of FoCAM2011. London Mathematical Society Lecture Notes Series, 403, pp. 93–112. Nov. 2012, available at http://arxiv.org/abs/1111.6630, 2011

  20. Karlin S., Taylor H.M.: A first course in stochastic processes. Academic Press, New York-London (1975)

    MATH  Google Scholar 

  21. Karski M., Förster L., Choi J.M., Alt W., Widera A., Meschede D.: Nearest-Neighbor Detection of Atoms in a 1D Optical Lattice by Fluorescence Imaging. Phys. Rev. Lett. 102, 053001 (2009)

    Article  ADS  Google Scholar 

  22. Kiukas, J., Ruschhaupt, A., Schmidt, P.O., Werner, R.F.: Exact energy-time uncertainty relation for arrival time by absorption. http://arxiv.org/abs/1109.5087v1 [quant-ph], 2011

  23. Krushchev S.: Schur’s algorithm, orthogonal polynomials and convergence of Wall’s continued fractions in \({\mathcal{L}^{2}(\mathbb {T})}\). J. Approx. Theory 108, 161–248 (2001)

    Article  MathSciNet  Google Scholar 

  24. Last Y.: Quantum dynamics and decomposition of singular continuous spectra. J. Funct. Anal. 142, 406–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Macdonald I.G.: Symmetric functions and Hall polynomials. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  26. Mensky, M.B.: Continuous Quantum measurements and path integrals. Bristol-Philadelphia, PA-Muenchen: IOP Publishing, 1993

  27. Pólya G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 84, 149–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed M., Simon B.: Methods of Modern Mathematical Physics III: Scattering Theory. Academic Press, London-New York (1979)

    MATH  Google Scholar 

  29. Riesz F.: Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung. Math. Zeit. 2(3-4), 312–315 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schur J.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind; fortsetzung. J. Reine Ang. Math. 147, 205–232 (1917)

    Google Scholar 

  31. Schur J.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. J. Reine Ang. Math. 148, 122–145 (1918)

    Google Scholar 

  32. Simon, B.: Orthogonal polynomials on the unit circle, Vol. 1. Providence, RI: Amer. Math. Soc., 2005

  33. Simon, B.: Orthogonal polynomials on the unit circle, Vol. 2. Providence, RI: Amer. Math. Soc., 2005

  34. Simon B.: CMV matrices: Five years after. J. Comp. Appl. Math. 208(1), 120–154 (2007)

    Article  ADS  MATH  Google Scholar 

  35. Štefaňák M., Jex I., Kiss T.: Recurrence and Pólya number of quantum walks. Phys. Rev. Lett. 100, 020501 (2008)

    Article  Google Scholar 

  36. Verblunsky, S.: On positive harmonic functions: A contribution to the algebra of Fourier series. Proc. London Math. Soc. s.2, 38, 125–157 (1935)

  37. Watkins D.S.: Some perspectives on the eigenvalue problem. SIAM Rev. 35, 430–471 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Werner R.F.: Arrival time observables in quantum mechanics. Ann. Inst. H. Poincaré Phys. Théor. 47, 429–449 (1987)

    MATH  Google Scholar 

  39. Yosida K., Kakutani S.: Markoff process with an enumerable infinite number of states. Jap. J. Math 16, 47–55 (1940)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Werner.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünbaum, F.A., Velázquez, L., Werner, A.H. et al. Recurrence for Discrete Time Unitary Evolutions. Commun. Math. Phys. 320, 543–569 (2013). https://doi.org/10.1007/s00220-012-1645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1645-2

Keywords

Navigation