Skip to main content
Log in

Weyl group multiple Dirichlet series II: The stable case

  • Published:
Inventiones mathematicae Aims and scope

Abstract

To each reduced root system Φ of rank r, and each sufficiently large integer n, we define a family of multiple Dirichlet series in r complex variables, whose group of functional equations is isomorphic to the Weyl group of Φ. The coefficients in these Dirichlet series exhibit a multiplicativity that reduces the specification of the coefficients to those that are powers of a single prime p. For each p, the number of nonzero such coefficients is equal to the order of the Weyl group, and each nonzero coefficient is a product of n-th order Gauss sums. The root system plays a basic role in the combinatorics underlying the proof of the functional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochner, S.: A theorem on analytic continuation of functions in several variables. Ann. Math. (2) 39, 14–19 (1938)

    Google Scholar 

  2. Bourbaki, N.: Lie groups and Lie algebras. Chaps. 4–6. Elements of Mathematics (Berlin). Berlin: Springer 2002. Translated from the 1968 French original by Andrew Pressley

  3. Brubaker, B., Bump, D.: On Kubota’s Dirichlet series. Accepted for publication in Crelle

  4. Brubaker, B., Bump, D.: Residues of Weyl group multiple Dirichlet series associated to \(\widetilde{\operatorname{GL}}_{n +1}\). Preprint available at http://sporadic.stanford.edu/bump/lseries.ps

  5. Brubaker, B., Bump, D., Chinta, G., Friedberg, S., Hoffstein, J.: Weyl group multiple Dirichlet series I. Preprint available at http://sporadic.stanford.edu/bump/wmd.ps

  6. Brubaker, B., Bump, D., Friedberg, S., Hoffstein, J.: Weyl group multiple Dirichlet series III: Eisenstein series and twisted unstable A r . Preprint available at http://sporadic.stanford.edu/bump/wmd3.ps

  7. Bump, D.: Lie groups. Graduate Texts in Mathematics, vol. 225. New York: Springer 2004

  8. Bump, D., Hoffstein, J.: Some conjectured relationships between theta functions and Eisenstein series on the metaplectic group. In: Number theory (New York 1985/1988), Lect. Notes Math., vol. 1383, pp. 1–11. Berlin: Springer 1989

  9. Casselman, W., Shalika, J.: The unramified principal series of p-adic groups. II. The Whittaker function. Compos. Math. 41, 207–231 (1980)

    MATH  MathSciNet  Google Scholar 

  10. Chinta, G.: Mean values of biquadratic zeta functions. Invent. Math. 160, 145–163 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedberg, S., Hoffstein, J., Lieman, D.: Double Dirichlet series and the n-th order twists of Hecke L-series. Math. Ann. 327, 315–338 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: An introduction to complex analysis in several variables. North-Holland Mathematical Library, vol. 7, 3rd edn. Amsterdam: North-Holland Publishing Co. 1990

  13. Ireland, K., Rosen, M.: A classical introduction to modern number theory. Graduate Texts in Mathematics, vol. 84, 2nd edn. New York: Springer 1990

  14. Jacquet, H.: Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. Fr. 95, 243–309 (1967)

    MATH  MathSciNet  Google Scholar 

  15. Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Publ. Math., Inst. Hautes Étud. Sci. 59, 35–142 (1984)

    MATH  MathSciNet  Google Scholar 

  16. Kubota, T.: On automorphic functions and the reciprocity law in a number field. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2. Tokyo: Kinokuniya Book-Store Co. Ltd. 1969

  17. Neukirch, J.: Algebraic number theory. Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences]. Berlin: Springer 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder

  18. Patterson, S.J.: Whittaker models of generalized theta series. In: Séminaire de théorie des nombres (Paris 1982/1983). Prog. Math., vol. 51, pp. 199–232. Boston, MA: Birkhäuser 1984

  19. Selberg, A.: A new type of zeta functions connected with quadratic forms. In: Report of the Institute in the Theory of Numbers, pp. 207–210. Boulder, CO: University of Colorado 1959

  20. Springer, T.A.: Reductive groups. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR 1977), Part 1. Proc. Sympos. Pure Math., XXXIII, pp. 3–27. Providence, RI: Am. Math. Soc. 1979

  21. Suzuki, T.: Some results on the coefficients of the biquadratic theta series. J. Reine Angew. Math. 340, 70–117 (1983)

    MATH  MathSciNet  Google Scholar 

  22. Suzuki, T.: Rankin-Selberg convolutions of generalized theta series. J. Reine Angew. Math. 414, 149–205 (1991)

    MATH  MathSciNet  Google Scholar 

  23. Suzuki, T.: On the biquadratic theta series. J. Reine Angew. Math. 438, 31–85 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brubaker, B., Bump, D. & Friedberg, S. Weyl group multiple Dirichlet series II: The stable case. Invent. math. 165, 325–355 (2006). https://doi.org/10.1007/s00222-005-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0496-2

Keywords

Navigation