Skip to main content
Log in

One-Dimensional Infinite Horizon Nonconcave Optimal Control Problems Arising in Economic Dynamics

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We study the existence of optimal solutions for a class of infinite horizon nonconvex autonomous discrete-time optimal control problems. This class contains optimal control problems without discounting arising in economic dynamics which describe a model with a nonconcave utility function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B.D.O., Moore, J.B.: Linear Optimal Control. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  2. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions I. Physica D 8, 381–422 (1983)

    Article  MathSciNet  Google Scholar 

  3. Blot, J.: Infinite-horizon Pontryagin principles without invertibility. J. Nonlinear Convex Anal. 10, 177–189 (2009)

    MathSciNet  Google Scholar 

  4. Blot, J., Cartigny, P.: Optimality in infinite-horizon variational problems under sign conditions. J. Optim. Theory Appl. 106, 411–419 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coleman, B.D., Marcus, M., Mizel, V.J.: On the thermodynamics of periodic phases. Arch. Ration. Mech. Anal. 117, 321–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stud. 34, 1–18 (1967)

    Article  MathSciNet  Google Scholar 

  7. Jasso-Fuentes, H., Hernandez-Lerma, O.: Characterizations of overtaking optimality for controlled diffusion processes. Appl. Math. Optim. 57, 349–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Optim. 13, 19–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leizarowitz, A.: Tracking nonperiodic trajectories with the overtaking criterion. Appl. Math. Optim. 14, 155–171 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leizarowitz, A., Mizel, V.J.: One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Ration. Mech. Anal. 106, 161–194 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Makarov, V.L., Rubinov, A.M.: Mathematical Theory of Economic Dynamics and Equilibria. Springer, Berlin (1977)

    MATH  Google Scholar 

  12. Marcus, M., Zaslavski, A.J.: The structure of extremals of a class of second order variational problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16, 593–629 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mordukhovich, B.: Minimax design for a class of distributed parameter systems. Autom. Remote Control 50, 1333–1340 (1990)

    MathSciNet  Google Scholar 

  14. Mordukhovich, B., Shvartsman, I.: Optimization and feedback control of constrained parabolic systems under uncertain perturbations. In: Optimal Control, Stabilization and Nonsmooth Analysis. Lecture Notes Control Inform. Sci., pp. 121–132. Springer, Berlin (2004)

    Google Scholar 

  15. Pickenhain, S., Lykina, V.: Sufficiency conditions for infinite horizon optimal control problems. In: Recent Advances in Optimization. Proceedings of the 12th French-German-Spanish Conference on Optimization, Avignon, pp. 217–232. Springer, Berlin (2006)

    Google Scholar 

  16. Pickenhain, S., Lykina, V., Wagner, M.: On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybern. 37, 451–468 (2008)

    MathSciNet  Google Scholar 

  17. Prieto-Rumeau, T., Hernandez-Lerma, O.: Bias and overtaking equilibria for zero-sum continuous-time Markov games. Math. Methods Oper. Res. 61, 437–454 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rapaport, A., Cartigny, P.: Turnpike theorems by a value function approach. ESAIM Control Optim. Calc. Var. 10, 123–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rapaport, A., Cartigny, P.: Nonturnpike optimal solutions and their approximations in infinite horizon. J. Optim. Theory Appl. 134(1), 1–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zaslavski, A.J.: Ground states in Frenkel-Kontorova model. Math. USSR Izv. 29, 323–354 (1987)

    Article  Google Scholar 

  21. Zaslavski, A.J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, New York (2006)

    MATH  Google Scholar 

  22. Zaslavski, A.J.: Turnpike results for a discrete-time optimal control system arising in economic dynamics. Nonlinear Anal. 67, 2024–2049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zaslavski, A.J.: Two turnpike results for a discrete-time optimal control systems. Nonlinear Anal. 71, 902–909 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski.

Additional information

Communicating Editor: Frederic Bonnans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavski, A.J. One-Dimensional Infinite Horizon Nonconcave Optimal Control Problems Arising in Economic Dynamics. Appl Math Optim 64, 417–440 (2011). https://doi.org/10.1007/s00245-011-9146-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-011-9146-9

Keywords

Navigation